

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA CIVIL

TEMA: "APROXIMACION DE UNA PRUEBA DE CONTROL PARA EVALUAR LA FATIGA EN MEZCLAS ASFALTICAS"

AUTOR:

Tomalá Criollo, Javier Geovanny

Trabajo de Seminario de Graduación Previo a la Obtención del Título de:

INGENIERO CIVIL

TUTOR: Ing. Vila Romaní Rolando, PhD

> Guayaquil, Ecuador 2015

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

CERTIFICACIÓN

Certificamos que el presente trabajo fue realizado en su totalidad por el Sr. Javier Geovanny Tomalá Criollo, como requerimiento parcial para la obtención del Título de INGENIERO CIVIL.

TUTOR:

Ing. Rolando Vila Romaní, PhD

DIRECTOR DE LA CARRERA

Ing. Stefany Esther Alcívar Bastidas

Guayaquil, a los 18 del mes de marzo del año 2015

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA CIVIL

DECLARACIÓN DE RESPONSABILIDAD

Yo, Javier Geovanny Tomalá Criollo

DECLARO QUE:

El Trabajo de Titulación: "APROXIMACION DE UNA PRUEBA DE CONTROL PARA EVALUAR LA FATIGA EN MEZCLAS ASFALTICAS", previa a la obtención del Título de INGENIERO CIVIL, ha sido desarrollado en base a una investigación exhaustiva, respetando derechos intelectuales de terceros conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico del Trabajo de Titulación referido.

Guayaquil, a los 18 del mes de marzo del año 2015

EL AUTOR

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

AUTORIZACIÓN

Yo, Javier Geovanny Tomalá Criollo

Autorizo a la Universidad Católica de Santiago de Guayaquil, la **publicación** en la biblioteca de la institución del Trabajo de Titulación: "APROXIMACION DE UNA PRUEBA DE CONTROL PARA EVALUAR LA FATIGA EN MEZCLAS ASFALTICAS", cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.

Guayaquil, a los 18 del mes de marzo del año 2015

EL AUTOR

AGRADECIMIENTO

A mis padres, quienes con su apoyo moral, afectuoso incondicional que me dieron la fuerza para seguir y culminar con éxito este gran pasó en mi vida profesional; a mi tutor Ing. Rolando Vila, por su apoyo, paciencia y confianza, depositadas en mí, durante todo este proceso, con su conocimiento investigativo supo guiar adecuadamente el desarrollo del mismo.

DEDICATORIA

A mi padre, que me enseño el valor del trabajo, respeto y responsabilidad; a mi madre, por su cariño, dedicación que cada día sea mejor, ha sido la responsable de la persona que soy hoy en día; a mi familia, en especial a mis hermanos Patricio Tomalá y Romina Tomalá, a mi tíos y primos; a Gabriela Alana por su amistad, en general por el apoyo moral brindado durante mi etapa universitaria, quienes siempre me bridaron su apoyo en esos momentos difíciles y con los cuales compartí muchas alegrías. A mis amigos, que con su apoyo moral supieron fomentar el entusiasmo por seguir adelante; a mi amiga Sandra Elizabeth Menoscal que gracias a su bondad, carisma y apoyo moral hizo posible que cada día mejore como ser humano.

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

CALIFICACIÓN

Ing. Rolando Vila Romaní, PhD TUTOR

ÍNDICE GENERAL

AGRADECIMIENTOv
DEDICATORIA
ÍNDICE GENERAL viii
RESUMEN (ABSTRACT)xv
CAPÍTULO 1: INTRODUCCIÓN1
1.1 Antecedentes1
1.2 Objetivos:
1.4 Enfoque metodológico:2
CAPITULO 2. FATIGA EN MEZCLAS ASFALTICAS4
2.1 GENERALIDADES
2.2 METODOS DE PRUEBA DE FATIGA5
2.3 ENSAYO DIAMETRAL
2.3.1 VENTAJAS Y LIMITACIONES 8
2.4 FACTORES QUE AFECTAN LA RESISTENCIA A LA FATIGA9
2.4.1METODO DE EJECUCIÓN DEL ENSAYO 10
2.4.2 MODULO DE APLICACON DE LAS CARGAS
2.4.3 CARACTERÍSTICAS DE LAS MEZCLAS 17
2.4.4 TEMPERATURA 20
2.5 SELECCIÓN DE UN CRITERIO DE FALLO POR FATIGA EN EL ECUADOR
2.5.1 OBSERVACIONES PRELIMINARES
2.5.1 CRITERIO DEL INSTITUTO DEL ASFALTO
2.5.2 CRITERIO DE SHELL
2.6 SELECCION DE UN METODO PARA EVALUAR DAÑO POR FATIGA EN LAS MEZCLAS ASFALTICAS27

2.6.1 Hipótesis de Miner27
CAPITULO 3. VALIDACION DE UNA POSIBLE PRUEBA PARA CONTROL DE FATIGA
3.1 INTRODUCCION
3.2 DESCRIPCION DE LA PRUEBA PROPUESTA
3.3 RESULTADOS OBTENIDOS
CAPITULO 4. Predicción del comportamiento a la fatiga en pavimentos diseñados por AASHTO 9342
4.1 INTRODUCCION
4.2 PROCEDIEMINETO DEL ESTUDIO43
4.2.1 ESTRUCTURA DE PAVIMENTO A UTILIZARSE 43
4.2.2 ANALISIS DEL TRANSITO 43
4.2.3 CALCULO DEL NÚMERO DE APLICACIONES DE CARGA 43
4.2.4 ANALISIS DE LA TEMPERATURA 44
4.2.5 CALCULO DEL MODULO DE RIGIDEZ 48
4.2.6 DETERMINACION LA DEFORMACION HORIZONTAL POR TRACCION
4.2.7 Cálculo del número de aplicaciones por falla
4.2.8 Cálculo del daño total acumulado 50
4.3 RESULTADOS OBTENIDOS
4.3.1Daños obtenidos para los ejes de diseño empleando hojas de Excel
4.3.2 Número de ejes permisibles que soportarían los espesores de mezclas empleados en los diferentes diseños
4.3.3 Calculo de espesores necesarios para soportar los ESAL de diseño 54
5. CONCLUSIONES Y RECOMENDACIONES
5.1 CONCLUSIONES
5.2 RECOMENDACIONES

BLIOGRAFÍA	.60
ANEXOA : ENSAYO FATIGA	.62
ANEXOB : DISEÑOS ESTRUCTURALES	.71
ANEXO C : PORCENTAJE DE VEHÍCULOS PESADOS POR HORA	.79
ANEXO D:DEFORMACIONES UNITARIAS Y MODULO DE RIGIDEZ	.80
ANEXO E:DETERMINACION DE DAÑOS REGION COSTA	.84

ÍNDICE DE TABLAS

Tabla 2.1 Comparación entre esfuerzo controlado y deformación controlada						
Tabla 2.2 característica de los asfaltos17						
Tabla 2.3 Tabla de resumen de pruebas realizadas						
Tabla 3.1 Prueba de repeticiones permisibles, vía manta y crucita32						
Tabla 3.2 Prueba de repeticiones permisibles, vía Guaranda - Balzapamba.						
Tabla 3.3 Prueba de repeticiones permisibles, vía Urbanización La Beata						
Tabla 3.4 Prueba de repeticiones permisibles, vía Interconexión						
(Refinería del Pacifico)37						
Tabla 3.5 Prueba de repeticiones permisibles, vía Km26 (PuertoInca)39						
Tabla 3.6 Prueba de repeticiones permisibles, vía Naranjal Rio 741						
Tabla 4.1 Temperatura capa asfáltica Región Costa45						
Tabla 4.2 Temperatura capa asfáltica Región Sierra46						
Tabla 4.3 Temperatura capa asfáltica Región Amazonia47						
Tabla 4.4 Daños para ESAL de diseño Región Costa						
Tabla 4.5 Daños para ESAL de diseño Región Sierra51						
Tabla 4.6 Daños para ESAL de diseño Región Amazónica51						
Tabla 4.7 No de ESAL permisible en función de H(cm), Región Costa52						

Tabla 4.8 No de ESAL permisible en función de H(cm), Región Sierra.....52

Tabla 4.9 No de ESAL permisible en función de H (cm), región Amazonia..

Tabla 4.10 E	Espesor neo	cesario en	función	de ESAL,	región	Costa	54
--------------	-------------	------------	---------	----------	--------	-------	----

 Tabla 4.11
 Espesor necesario en función de ESAL, región Sierra......54

 Tabla 4.12
 Espesor necesario en función de ESAL, región Amazonia......54

ÍNDICE DE GRÁFICOS

Figura 2.1 Curva resistencia vs número de Ciclos4
Figura 2.2 Estado tensional en un pavimento bajo carga simple5
Figura 2.3 Pruebas para evaluar la fatiga experimentalmente6
Figura 2.4 NAT (Nottingham Asphalt Tester) UCSG7
Figura 2.5 Esquema de probeta bajo tracción indirecta7
Figura 2.6 Configuración de la carga y rotura del ensayo de tracción indirecta, Kennedy8
Figura 2.7 Curva de Wholer a) Bajo deformación controlada
, b) Bajo esfuerzo controlado (Epps y Monismith, 1972)11
Figura 2.8 Deformación inicial vs aplicaciones de carga .Comparación
para ensayos bajo esfuerzo controlado y bajo deformación controlada (EppsY Monismith, 1972)
Figura 2.9 Representación esquemática del comportamiento a la fatiga de los materiales de pavimento asfaltico bajo varios modos de carga. Epps y Monismith (1972)14
Figura 2.10 Pulso Sinusoidal y Harvesine
Figura 2.11 Evolución del módulo resiliente (E _.) de una mezcla asfaltica
Tipo MDC-2 con la temperatura y la frecuencia de carga (F)
(Rondon et al., 2010)17
Figura 2.12Clasificación de los vacíos en las mezclas asfálticas (adaptado de Chen el al.
2004)

Figura 2.13 Contenido de asfalto vs. Numero de aplicaciones a la falla para dos tipos de agregados (Jimenea y Gallaway, 1962)......20

Figura 2.14	Resultados de los ensayos fatiga sobre muestras de Sansheet varias temperaturas y velocidades, bajo esfuerzo controlado	t
	(SaalPell, 1960)21	
Figura 2.15⊺	Temperatura vs número de aplicaciones a la falla (Jiménez y Gallaway, 1962)2 ⁻	1
Figura 2.16	Deformación vs Número de repeticiones para el fallo2	4
Figura 2.17	Relaciones entre la deformación inicial y la vida a la fatiga (Bergan 1973)2	5
Figura 4.1	Ingreso de datos al programa Alize48	3
Figura 4.2	Resultados del programa Alize49	9
Figura 4.3 R requeridas p Costa	Relaciones entre los ESAL y los espesores de capa asfáltica para estructuras diseñadas por AASHTO 93. Región 	5
Figura 4.4 R requeridas p	Relaciones entre los ESAL y los espesores de capa asfáltica para estructuras diseñadas por AASHTO 93. Región Sierra56	5
Figura 4.5R requeridas p Amazónica	elaciones entre los ESAL y los espesores de capa asfáltica para estructuras diseñadas por AASHTO 93. Región 	7
FOTOS		
Foto 1 Vía G	Guaranda – Balzapamba33	
Foto 2 Vía in	nterconexión (Refinería del Pacifico)36	

RESUMEN (ABSTRACT)

En el presente trabajo de titulación se realiza dos enfoques los cuales se centran en el comportamiento de las mezclas asfáltica ante el fenómeno fatiga (piel de cocodrilo).

El primer análisis consiste en evaluar núcleos de diferentes vías existentes en el Ecuador, mediante el ensayo de tracción indirecta con la finalidad de establecer que las vías que sobrepasan un número de 100000 repeticiones, para una deformación inicial de 135 µ strain se consideran en buen estado.

Mientras que el segundo análisis que se enfoca esta investigación es evaluar el comportamiento de la fática en una mezcla asfáltica densa con tamaño máximo ¹/₂", utilizando la hipótesis de Shell que bajo las diferentes condiciones de temperaturas de las tres principales regiones del Ecuador: Costa, Sierra, Amazonía. A partir de este análisis recomendar espesores adecuados de capa asfáltica en las diferentes regiones del país.

Palabras Claves: Ensayo de fatiga, Mezclas Asfálticas ,Miner. Shell.

CAPÍTULO 1: INTRODUCCIÓN

1.1 Antecedentes .

Los pavimentos de las vías ubicadas en las principales regiones del Ecuador (Costa, Sierra, Amazonia) presenta un agrietamiento debido a una deformación horizontal a la tracción producido por la carga del tránsito vehicular.

El laboratorio de carreteras de la UCSG ha realizado varias investigaciones que se han enfocado en el comportamiento de las vías principales del país buscando generar un mayor entendimiento para las exigencias de calidad y ve la necesidad de complementar la metodología de diseño de las mezclas asfálticas.

Se conoce que la temperatura es un factor importante en el comportamiento de las mezclas asfáltica, las altas temperaturas en el pavimento produce una reducción a la resistencia de deformaciones generando una mayor posibilidad de fallas. En el Ecuador se pueden observar tres tipos regiones como lo son la Costa, Sierra y Amazonía, cada una con una temperatura muy marcada por lo cual es importante realizar un estudio de nuestras vías y el comportamiento que tienen ante el fenómeno fatiga.

1.2 Justificación del tema:

Se puede observar diferentes niveles de fallas en las capas asfálticas en cada una de las regiones del Ecuador por lo cual sería muy favorable realizar un estudio que complemente el método de diseño AASHTO 93 para cada región considerando el comportamiento a la fatiga y su deformación debido a los esfuerzos aplicados.

Establecer el deterioro de las mezclas para mejorar su desempeño y calidad de los materiales en este caso la mezcla de asfalto y su componente evitando daños en las vías y el deterioro de los vehículos así como accidentes provocados por causas de su mal estado de las vías.

1

Establecer el deterioro de las mezclas para mejorar su desempeño y calidad de los materiales en este caso la mezcla de asfalto y su componente evitando daños en las vías y el deterioro de los vehículos así como accidentes provocados por causas de su mal estado de las vías.

1.2 Objetivos:

1.- Validar una propuesta de prueba de fatiga sobre núcleos de mezclas asfálticas extraídos de diferentes vías, empleando una prueba dinámica de tracción indirecta con el equipo NAT, donde se evalúa los ciclos para el fallo bajo un nivel de deformación de 135 micro-strain.

2.- Aplicar un método de predicción del comportamiento a la fatiga, en pavimentos diseñados por AASHTO 93 para diferentes condiciones de tráfico y calidad de subrasante, considerando las particularidades de temperatura de las diferentes regiones del Ecuador (costa, sierra y Amazonía), así como las propiedades de una mezcla asfáltica representativa de nuestros materiales.

1.4 Enfoque metodológico:

El trabajo presente se enfoca en la parte cuantitativo y descriptivo en la que se definen parámetros para correlacionar su desempeño mediante las pruebas de fatiga realizadas con núcleos obtenidos de vías existentes.

Se desarrolla en tres etapas:

- 1. Marco teórico conceptual.
- 2. Desarrollo experimental.
- 3. Análisis de resultados.

En cada una de las etapas antes enunciadas se ejecutan tareas específicas:

- 1. Marco teórico conceptual:
 - Revisión bibliográfica.
 - Descripción de cada prueba, procedimiento de trabajo, parámetros involucrados y fórmulas de cálculo.
- 2. Desarrollo experimental:
 - Caracterización de los núcleos a ensayar.
 - Preparación y adecuación de los núcleos.
 - Realización del ensayo de fatiga.
- 3. Análisis de resultados:
 - Comparación de resultados para una deformación de

135 micro- strain.

- Comparación y relaciones entre los comportamientos a la fatiga en estructuras diseñadas para diferentes tráficos y calidad de subrasante.
- -Conclusiones.

-Recomendaciones.

CAPITULO 2. FATIGA EN MEZCLAS ASFALTICAS

2.1 GENERALIDADES.

El fenómeno de fatiga es uno de los principales mecanismos de falla en las mezclas asfálticas en servicio (Tarefder, R.A., Kias, E. Zaman, A. 2008), que frecuentemente está ligado con la disminución de la resistencia mecánica de un material cuando se encuentra sometido a esfuerzos dinámicos. Se explica en la teoría del medio continuo como un fenómeno en el que los materiales se deterioran cuando se someten a cargas cíclicas y su comportamiento permite establecer relación de Esfuerzos vs Numero de ciclos (S vs N) como puede verse en la Figura 2.1

Figura 2.1 Curva resistencia vs número de ciclos

La fatiga tiene su origen en la no-linealidad o no-uniformidad del material que relaciona defectos, impurezas o discontinuidades que concentran esfuerzos localizados y sobre pasan la capacidad de resistencia del material en zonas mencionadas.

La falla de la mezcla asfáltica por fatiga muestra que la estructura ha excedido las aplicaciones de carga para la cual fue diseñada. El paso de los vehículos hace que la capa asfáltica se flexione, generando esfuerzo de tracción con niveles de deformación por tracción que pueden ser elevados en la parte inferior de la carpeta asfáltica. Esta repetición de carga hace que la mezcla asfáltica pierda rigidez, lo que conduce a la formación de micro fisuras.

2.2 METODOS DE PRUEBA DE FATIGA

Kerhoven y Dormon (1953) esquematizan en la Figura 2 el estado de tensiones provocado por una carga simple en la estructura de un pavimento, en donde distingue cuatro casos.

- 1. Compresión triaxial en la superficie inmediata bajo la rueda.
- 2. Tracción longitudinal y transversal combinada con compresión vertical en la parte inferior de la capa bituminosa bajo la rueda.
- Tracción longitudinal o transversal en la superficie a una cierta distancia de la carga.
- 4. Compresión longitudinal o transversal en el fondo de la capa bituminosa a una cierta distancia de la carga.

Cada uno de estos ensayos representa un esfuerzo tensional, pero no existe ninguno que represente los cuatro la vez. Sin embargo se llega a la conclusión que la zona crítica de tensiones se produce en la parte inferior de la mezcla asfáltica bajo una carga aplicada.

Los métodos de pruebas más utilizados para describir el comportamiento de la fatiga en la falla de la estructura de un pavimento puede apreciarse en la Figura 3) se aprecia los diferentes métodos de pruebas.

Figura 2.3 Pruebas para evaluar la fatiga experimentalmente

En nuestro trabajo de prueba realizado corresponde con una tracción indirecta dinámica. Por esta razón se profundiza a continuación la característica específica de la misma.

2.3 ENSAYO DIAMETRAL

La prueba diametral de fatiga es una prueba de tracción indirecta conducida por un repetidor de carga sobre un espécimen cilíndrico con una carga compresiva paralela y a lo largo del plano diametral vertical.

La prueba es simple y es considerada por algunos como un método eficaz para caracterizar los materiales en términos de características fundamentales (Rondón et al 2012).

Figura2.4 NAT (Nottingham Asphalt Tester) UCSG.

Figura 2.5 Esquema de probeta bajo tracción indirecta.

Sousa et al. (1991 identificaron las formas principales de falla que ocurren durante el ensayo de tracción indirecta:

- ✓ La falla inicia en el centro o muy cerca del centro de la muestra, el resultado se presenta la división completa de la muestra cilíndrica.
- ✓ La falla inicia en la parte superior propagándose descendente.
- ✓ La falla real no ocurre, pero sin embargo se deforma plásticamente.

Figura 2.6 Configuración de la carga y rotura del ensayode tracción indirecta, Kennedy.

2.3.1 VENTAJAS Y LIMITACIONES

VENTAJAS

- La prueba es de naturaleza simple
- El diseño de mezclas y de pavimentos para el soporte de la fatiga es posible en principio usando la respuesta de fatiga medida por la prueba aplicando la correlación de campo
- El equipo es aplicable para pruebas como: módulo resiliente y fuerza de tensión.

- La falla se inicia en una región de esfuerzos relativamente uniforme.
 Sin embargo, según Porter y Kennedy (1975), la variable que gobierna es (σt y σc).
- Existe un estado biaxial de esfuerzo, siendo este posiblemente una representación mejor de las condiciones de campo.
- Las pruebas se pueden realizar en especímenes del laboratorio y de campo.

LIMITACIONES

- Un estado biaxial de la tensión existe en el centro del espécimen es imposible variar los componente verticales y horizontales y, por lo tanto extender el los esfuerzos en los puntos críticos dentro de un pavimento en "in situ".
- Este método subestima la vida de la fatiga si la tensión extensible principal se utiliza como el determinante de los daños. Aun cuando la diferencia de la tensión σt y σc, se utiliza para predecir la vida de la fatiga.
- Existe preocupación debido a la ausencia de la renovación de la tensión y la acumulación de la deformación permanente.

2.4 FACTORES QUE AFECTAN LA RESISTENCIA A LA FATIGA

RaoTangella et al. (1990), la fatiga de las mezclas asfálticas se ve afectada por las siguientes causas:

- Método de ejecución del ensayo
- Modo de aplicación de la carga
- Características de las mezclas
- > Temperatura

2.4.1METODO DE EJECUCIÓN DEL ENSAYO

Los ensayos realizados en laboratorio caracterizan el comportamiento de la fatiga en las mezclas asfálticas, los cuales se pueden realizarse por dos métodos:

- Esfuerzo controlado
- Deformación controlada

Figura 2.7 Curva de Wholera) Bajo deformación controlada

, b)Bajo esfuerzo controlado(Epps y Monismith, 1972).

La fatiga es mayor en carga con deformación controlada que en cargas con esfuerzo controlado (Monismith et al 1994), en la siguiente tabla 2.1 muestra la comparación entre el esfuerzo controlado y la deformación controlada.

VARIABLES	ESFUERZO CONTROLADO (CARGA)	DEFORMACIÓN CONTROLADA (DEFLEXIÓN)			
Definición de la falla número de ciclos	Bien definido desde las fracturas del espécimen	Arbitrario en el sentido que la prueba es discontinua cuando e nivel de carga ha sido reducido a alguna proporción de su inicial valor; por ejemplo, a 50 por cient del nivel inicial			
Dispersión de los datos de prueba de fatiga	Menor dispersión	Mayor dispersión			
Número requerido de muestras	Más pequeño	Más grande			
Simulación de influencias a largo plazo	Las influencias a largo plazo tales como envejecimiento conducen a un módulo de rigidez creciente y probablemente a un aumento de la vida de fatiga	Influencias a largo plazo que llevan a un módulo de rigidez en aumento llevará a la vida de fatiga reducida			
Magnitud de vida de fatiga, N	Vida generalmente más corta	Vida generalmente más larga			
Efecto de variables de la mezcla	Más sensible	Menos sensible			
Proporción de dispersión de energía	Más rápidamente	Más lento			
Proporción de propagación de la grieta	Más rápidamente que in situ	Más representativo de las condiciones in-situ			
Efectos beneficiosos del periodo de descanso	Efecto beneficioso mayor	Menos efecto beneficioso			

Tabla 2.1 Comparación entre esfuerzo controlado y deformación controlada.

Monismith (1996) estableció una relación entre el espesor de la capa asfáltica y su modo de carga.

- Las capas asfálticas de espesor menor o igual a 5 centímetros se cargan a deformación constante .Esto se debe a que la deformación a tracción bajo la capa asfáltica es generada por la rigidez o la respuesta resiliente de la capa subyacente a ella.
- Las capas asfálticas de espesor de 16 centímetros se cargan a esfuerzo controlado, debido a que la capa es gruesa al aplicarle ciclos de carga y descarga la rigidez disminuye y por lo tanto aumenta la deformación, estas mezclas asfálticas se comportan como si se trabajara bajo esfuerzo constante.
- Las capas asfálticas de espesor mayor de 5 cm pero menor de 15 cm se cargan en un modo intermedio.

Figura 2.8 Deformación inicial vs aplicaciones de carga Comparación para ensayos bajo esfuerzo controlado y bajo deformación controlada

(Epps y Monismith, 1972).

Figura 2.9 Representación esquemática del comportamiento a la fatiga de los materiales de pavimento asfaltico bajo varios modos de carga.

Epps y Monismith (1972).

2.4.2 MODULO DE APLICACON DE LAS CARGAS

2.4.2.1 EFECTOS DEL TIEMPO EN RECESO

La aplicación de carga de en los ensayos discontinuos representan mejor las solicitaciones de las mezclas en situ, La recuperación resulta un incremento parcial de la rigidez luego de que esta disminuye, y la vida de la fatiga se prolonga, estudios realizados por Kim (1988), Bahía et al.(1999) han mostrado la recuperación de micro fisuras durante el periodo de receso.

En ensayos con periodos de receso la máxima recuperación del módulo depende del número de secuencias que se hayan aplicado ,el incremento de la temperatura durante el intervalo de receso otorga una recuperación de la rigidez de la mezcla asfáltica (Lee et al .,2000, y Baaj,2002) el grado de recuperación depende de la viscosidad del ligante cuando esta presenta una menor consistencia .Francken y Clauwart (1987) indica que el efecto benéfico de los periodos de receso es mayor cuando el ligante asfaltico muestra mayor penetración y la mezcla tiene un alto contenido de ligante.

En el periodo de reposo entre las cargas pueden presentar dos procesos de recuperación; El material se relaja y pierda algo de su esfuerzo residual, incrementando o disminuyendo de esa manera el nivel de esfuerzos aplicados por la siguiente aplicación de carga.

Las microgrietas formadas por la aplicación de cargas se pueden remediar parcialmente debido a la recuperación viscoelástica del asfalto y parcialmente debido a la reformación de fuerzas confinantes en el material después de la eliminación de la carga aplicada. Los dos efectos como resultado es el incremento de la vida a la fatiga en los pavimentos sujetos a las cargas de tránsito.

2.4.2.2 FRECUENCIA DE APLICACIÓN DE CARGAS

El tipo y duración de carga usada como carga repetitiva podría simular actualmente lo que ocurre en la realidad, se supone que el pulso de la carga pueden ser una onda tipo Haversine, sinusoidal o triangular y la duración de la carga dependerá de la velocidad del vehículo y el espesor de la capa inferior de la mezcla asfáltica.

Figura 2.10 Pulso Sinusoidal y Harvesine.

La aplicación de carga influye los resultados de ensayos de fatiga. Monismith et al. (1961) realizo ensayos bajo esfuerzo controlado a temperatura de (24 º C) sobre mezclas asfálticas densas en lo cual reportan los siguientes resultados:

La aplicación de cargas a una frecuencia entre 3 y 30 repeticiones por minutos no tiene efecto sobre el comportamiento de la fatiga en las mezclas asfálticas.

La frecuencia entre 30 y 100 repeticiones por minutos causa una disminución de la vida a la fatiga aproximadamente un 20 %.

Figura 2.11 Evolución del módulo resiliente (E) de una mezcla asfáltica tipo MDC-2 con la temperatura y la frecuencia de carga (F) (Rondón et al., 2010)

2.4.3 CARACTERÍSTICAS DE LAS MEZCLAS

Los ensayos que caracterizan la fatiga en materiales bituminosos tienen limitaciones para representar el comportamiento real de las mezclas asfálticas y sus modos de falla, debido a las variables que afectan su desempeño tales como; la forma y tamaño de la probeta, el contenido de agua, tamaño y textura de los agregados, la forma de aplicación de la carga, la granulometría, la energía de compactación, el tipo de asfalto el contenido de vacíos.

La característica de los asfaltos utilizados se muestran en al siguiente tabla 2.2.

Tipo de Asfalto	Clasificación	Susceptibilidad a la Temperatura	Absorción del agua	Contenido de Asfalto	Viscosidad	Índice de penetración	Rigidez
, or all of					a 25º C	IP	
AAG-1	AC 30	baja	1,2%	5	3.540.000	-0,5	menor
AAK-1	AR 4000	mayor		20,1	1.077.000	-1,5	mayor

Tabla 2.2 característica de los asfaltos.

Para los ensayos con esfuerzos controlados la vida en la fatiga aumenta cuando se utiliza un asfalto más flexible, mientras que en ensayos con deformación controlada la vida en la fatiga disminuye al utilizar el mismo tipo de asfalto, al cambiar el tipo de asfalto por uno más rígido ocurre lo contrario la vida por fatiga disminuye en los ensayo de esfuerzo controlado y aumenta en los ensayos con deformación controlada.

El contenido de vacíos y asfalto son característica de las mezclas asfálticas que afectan al comportamiento de los pavimentos flexibles, el asfalto debe proporcionar una adecuada resistencia y durabilidad, es importante el contenido de asfalto este ayuda a minimizar el ahuellamiento. Con un bajo porcentaje de asfalto la resistencia a la fatiga es mayor, y un elevado porcentaje de asfalto la resistencia a la fatiga disminuye.

Jiménez y Gallaway (1962) presentaron resultados de varios ensayos de fatiga indicando que las mezclas que contienen agregados con textura rugosa absorben más asfalto que las mezcla con agregados de textura suave, y por lo tanto la mezcla con agregados rugosos presentan mayor vida a la fatiga bajo esfuerzo controlado. (ver figura 2.12)

Los vacíos tienen como función generar espacios que estabilicen la mezcla, en el momento de incrementarse la temperatura o por efecto del clima o el tránsito vehicular, el asfalto tiende a fluir y ocuparespacios vacíos, se debe tener un equilibrio en la cantidad y distribución de vacíos, el contenido de vacíos muy bajos producen deformación plástica y exudación del asfalto.(Harvey et al., 1994).

El tamaño y la distribución de los vacíos con aire en las mezclas asfálticas dependen de las propiedades de los agregados, el diseño de la mezcla y el proceso de compactación. (Chen et al.,2004)

El contenido de aire se clasifica en tres categorías: contenido de vacíos, sami efectivos, impermeable.

18

Figura 2.12 Clasificación de los vacíos en las mezclas asfálticas

(adaptado de Chen el al. 2004)

El LANAMME, 2005 analiza que el bajo contenido de vacíos considera dos características que se presenta en la mezcla asfáltica favorables a la vida de la fatiga:

El aire no transmite ningún esfuerzo y si es remplazado por el ligante o el agregado se reduce el nivel de esfuerzo de dichos componente,

Un bajo contenido de aire en la estructura ligante-agregado genera una mezcla más homogénea.

Figura 2.13 Contenido de asfalto vs. Numero de aplicaciones a la falla para dos tipos de agregados (Jimenea y Gallaway, 1962)

2.4.4 TEMPERATURA

La mezcla asfáltica es afectada por la variación de temperatura debido a su comportamiento viscoso y su propiedad como la rigidez, para los ensayos bajo esfuerzo controlado la disminución de la temperatura en la mezclas asfáltica provoca que su rigidez aumente y su deformación en cada ciclo de carga sea menor ver (Figura 2.14).

El incremento de la temperatura durante los periodos de receso lleva una mayor recuperación del módulo de la mezcla, a altas temperaturas (>15° C) el proceso de recuperación se debe al cambio progresivo, del sol a gel, de la estructura del ligante y si el tiempo de receso es suficiente, este cambio es casi completo mientras ocurre este cambio el asfalto une las micro fisuras y la unión causa la recuperación. A bajas temperaturas (<15 ° C) el periodo de receso no permite la recuperación del daño estructural ocasionado por los ciclos de carga y descarga y la recuperación es parcial. (Sias y Kim, 2001)

Figura 2.14 Resultados de los ensayos fatiga sobre muestras de varias temperaturas y velocidades, bajo esfuerzo controlado (SaalPell, 1960).

Figura 2.15 Temperatura vs número de aplicaciones a la falla

(Jiménez y Gallaway, 1962).
Una mayor temperatura provoca un envejecimiento prematuro del asfalto reduciendo el desempeño de la mezcla y un aumento en la rigidez con el tiempo, varias investigaciones realizadas en ensayos bajo esfuerzo controlado como resultado de las mezclas envejecidas o rigidizadas en el transcurso del tiempo la vida de la fatiga es más larga .Mientras que ensayos bajo deformación controlada las muestras envejecidas presentan una vida a la fatiga más corta.

2.5 SELECCIÓN DE UN CRITERIO DE FALLO POR FATIGA EN EL ECUADOR

2.5.1 OBSERVACIONES PRELIMINARES

Las ecuaciones matemáticas necesarias para predecir la respuesta a la fatiga que experimentan las mezclas asfálticas en situ y en laboratorio se basan en general en relacionar el número de ciclos de falla que resiste la mezcla con la deformación o el esfuerzo aplicado. La desventaja de las relaciones matemáticas se debe a que no hay una sola ecuación para la deformación o el número de ciclos de falla que experimentara una mezcla asfáltica cuando es sometido a diferentes cargas o deformaciones y condiciones del ambiente.

La determinación de las propiedades de la fatiga, puede hacerse a través de ensayos de laboratorio directamente sobre muestras de hormigón asfáltico, o bien en base a observaciones sobre pavimentos en servicio.

Para tratar de establecer una ley de fatiga propia para el país se realizó un estudio experimental con una mezcla asfáltica densa obtenida de núcleos extraídos de la vía Guaranda–Balzapamba con unos 4 años de colocación.

En la figura que se	muestra pueden	observarse las	s relaciones	obtenidas.
---------------------	----------------	----------------	--------------	------------

POISSON'S R. =	0.35			GUARAN	IDA - BALZ	APAMBA						
VÍAS		10°C			20°C			30°C			40°C	
ESFUERZO	REPETI-	DEFOR-	MÓDULO	REPETI-	DEFOR-	MÓDULO	REPETI-	DEFOR-	MÓDULO	REPETI-	DEFOR-	MÓDULO
KPa	CIONES	MACIÓN	RIGIDEZ	CIONES	MACIÓN	RIGIDEZ	CIONES	MACIÓN	RIGIDEZ	CIONES	MACIÓN	RIGIDEZ
		(x 10^-6)	MPa		(x 10^6)	MPa		(x 10^-6)	MPa		(x 10^-6)	MPa
100										9526	330	621
150												
200							15199	218	1881	1069	743	552
250				32435	135	3795				605	1027	499
300				11765	210	2928	1340	450	1366	263	1265	486
350				6464	217	3311						
400				2631	236	3477	429	669	1226			
450				1892	292	3155						
500				1768	353	2901						
550	16154	157	7200	295	497	2269						
600	8474	180	6823									
650												
700	3277	233	6156									

Tabla 2.3 Tabla resumen de pruebas realizadas.

Como puede apreciarse existe un comportamiento variable en función de cada temperatura, siendo las deformaciones mayores en la medida que la temperatura aumenta. NO obstante para deformaciones pequeñas (por debajo de 300 µstrain) la recta de ajuste parece converger hacia un punto.

Un comportamiento similar se obtuvo en la Universidad de California en las investigaciones, donde se demostró el cambio de las pendientes respecto a las temperaturas, lo que fue corroborado también por los trabajos de Bergan (73) ,que se resumen en la siguiente Figura 2.17.

Figura 2.17 Relaciones entre la deformación inicial y la vida a la fatiga (Bergan 1973)

Debido a la escasez de equipos para realizar ensayos dinámicos en Ecuador, y al tiempo prolongado para ajustar las relaciones de laboratoriocampo, lo que pudiera llevar varios años, existe la necesidad de seleccionar un criterio de fatiga aplicable a nuestras condiciones. Por esto, se valoraron los criterios desarrollados o utilizados por varios investigadores encontrándose que los que poseen una aceptación más generalizada son los adoptados por el Instituto del Asfalto y por la Shell.

2.5.1 CRITERIO DEL INSTITUTO DEL ASFALTO

El criterio del Instituto del Asfalto responde a la expresión:

Siendo:

Nf = número de aplicaciones de ejes de 82 KN para provocar el fallo por fatiga.

Ch = deformación horizontal por tracción máxima en la parte inferior de la capa asfáltica (mm/mm).

Sm = módulo de rigidez de la mezcla (MPa).

Vv = Porcentaje de vacíos en la mezcla.

Vb = Contenido de betún en volumen (%).

2.5.2 CRITERIO DE SHELL

La ley de fatiga propuesta por la Shell y de amplio reconocimiento internacional, es utilizada en varios países incluidos Australia, Colombia y Venezuela, donde la temperatura ambiental es elevada. Esta ley es:

Nf =
$$\begin{pmatrix} 6918 (0,856. Vb + 1,08) \\ ------ \\ Sm^{0.36} . (\underline{Ch}) \\ 10-6 \end{pmatrix}^{5}$$

El valor de Nf obtenido debe multiplicarse por el llamado Coeficiente de Calage para ajustar las repeticiones de laboratorio al campo.

El criterio de Shell es el seleccionado para nuestros cálculos de fatiga, ya que además de su amplia validación, nos permite ser consecuentes con el análisis anterior de deformación plástica donde también se utiliza un método experimental de Shell.

2.6 SELECCION DE UN METODO PARA EVALUAR DAÑO POR FATIGA EN LAS MEZCLAS ASFALTICAS

2.6.1 Hipótesis de Miner.

La estructura de pavimento durante años ha presentado deterioro en la estructura el cual se analiza los daños causados en la mezcla asfáltica, nos permite conocer la problemática. Un proceso simple fue propuesto por Palmgren y representado por Miner, siendo conocido como la regla de Palmgren-Miner o regla lineal de acumulación de daño. De acuerdo con esta regla, el daño que la pieza sufrió bajo la acción de una dad amplitud de la tensión cíclica es directamente proporcional al número de ciclos actuantes en que se desarrolló esa amplitud de tensión.

Monismith sugirió en los años setenta que la hipótesis del daño acumulado propuesta por Miner, puede ser usada para estimar la vida de fatiga de capas bituminosas en estructuras de pavimentos flexibles, lo cual ya ha sido ampliamente corroborado.

Esta hipótesis supone un incremento lineal del deterioro con el número de aplicaciones de carga, proporcional a la intensidad de la carga aplicada, o sea:

Donde:

ni = número de aplicaciones de carga hasta el nivel de deformación i.

Ni = número de aplicaciones de carga requeridas para causar el fallo en el nivel de deformación i (según el gráfico de fatiga).

r = número de niveles de deformación seleccionados para el análisis.

D = daño total acumulado.

La posibilidad de empleo de esta hipótesis de cálculo en la determinación de la vida de fatiga de los firmes flexibles, así como el campo de validez de su aplicación ha sido ya comprobada y delimitada por diferentes autores.

Los pasos necesarios para aplicar la hipótesis de Miner son:

1.- Calcular las deformaciones horizontales en la parte inferior de la capa asfáltica a través del análisis tensional del sistema de capas elásticas.

2.- Estimar el número de repeticiones de carga ni, para cada nivel de deformación.

3.- Determinar el número de aplicaciones de carga, Ni, para causar el agrietamiento para cada nivel de deformación, según las leyes de fatiga recomendadas.

4.- Calcular el daño total acumulado, D.

Si D es igual o excede el valor de 1.0 para un pavimento flexible particular, el fallo por fatiga se espera entonces que ocurra, Si D es sustancialmente menor que 1.0 la sección pudiera estar sobre diseñada.

El valor de r, depende del número de condiciones distintas de temperatura con la cual se trabaja (debido a su efecto en el módulo del hormigón asfáltico) y de las condiciones soportantes seleccionadas para el análisis por fatiga del pavimento.

El daño en fatiga no es necesariamente lineal con el número de ciclos o con la razón de ni/Ni

CAPITULO 3. VALIDACION DE UNA POSIBLE PRUEBA PARA CONTROL DE FATIGA.

3.1 INTRODUCCION

En trabajos precedentes desarrollados dentro de un proyecto de investigaciones del Laboratorio de carretera (Suelos y Asfalto) de la UCSG se llegó a una propuesta teórica para la evaluación de la fatiga dentro los procedimientos de control de calidad de la mezcla asfáltica. El método que se describe a continuación está siendo aplicado actualmente en el desarrollo de dos trabajos de titulación, siendo uno de ellos ejecutados precisamente por el autor del presente estudio.

En síntesis el método se basa en chequear experimentalmente que si una briqueta o núcleo ensayado en el NAT a 20 ° C bajo una prueba de carga controlada alcanza tener un nivel de 135 µ strain repeticiones mayores a 10000, la mezcla tendrá un buen comportamiento a la fatiga.

3.2 DESCRIPCION DE LA PRUEBA PROPUESTA

- Obtención inicial del módulo rigidez bajo deformación controlada (Sm) realizada en el NAT (ver anexo A)
- Calculo del esfuerzo (σ en kPa) por la siguiente ecuación considerando un valor de deformación unitaria (ε) igual a 135 μ strain. El valor de coeficiente de Poisson (μ) en general se asume igual a 0.35.

$$\sigma(KPa) = \frac{Sm(KPa)\varepsilon}{(1+3\mu)}$$

- Aproximar el esfuerzo calculado a los parámetros requeridos para el ensayo de módulo bajo carga controlada. Por ejemplo esfuerzos de 200, 250, 300, 350 o 400 Kpa.
- 4. Con el valor aproximado en el punto 3 se procede a realizar una prueba de módulo de rigidez bajo carga controlada se vuelve a calcularse según el punto 2, repitiendo este proceso hasta que el esfuerzo calculado sea aproximadamente igual al de la prueba.
- 5. Realizar ensayo de fatiga bajo carga controlada en el NAT para chequear el número de repeticiones con el fallo.

3.3 RESULTADOS OBTENIDOS

A continuación se muestran los resultados obtenidos en las pruebas estudios realizadas a las 6 vías. En la vía "Naranjal-Rio 7" se desarrolló un análisis más amplio por existir una interesante información en estudios precedentes (VER ANEXO A).

VIA MANTA - CRUCITA.

Estado: La mezcla de asfáltica presenta peladura de intensidad baja en un 50 por ciento y fisuras longitudinales de intensidad baja en un 10-15 por ciento de la superficie.

DADAMETDOS		MUESTRA		
PARAMETROS	Briqueta # 26 Abscisa 13+080	Briqueta # 28 Abscisa 12+400	Briqueta # 36 Abscisa 8+200	
Deformación Inicial (μ strain)	135	135	135	
Sm (Mpa) a Def. Controlada	7602	7761	7512	
σ1 (kPa) calculada	501	511	495	
σ1 (kPa) Aproximado calculado	500	500	500	
Sm2 (Mpa) a σ calculada	7126	7591	6806	
σ2 (kPa) calculada	469	500	448	
σ2 (kPa) Aproximado calculado	450	500	450	
Sm 3 (Mpa) a σ2 calculada	6988	7536	6806	
σ3 (kPa) calculada	460	496	448	
σ3 (kPa) Aproximado calculado	460	500	450	
Repeticiones Nf para fatiga con ϵ de 135 µstrain.	>10000	8704	>10000	

Resultado de la prueba:

Tabla 3.1 Prueba de repeticiones permisibles, vía Manta – Crucita

Comentario:

Como se observa en la tabla de resultados la Briqueta # 28 falla a un valor inferior al de referencia (10,000 repeticiones), aunque no se aleja demasiado de dicho valor. Los resultados en general son satisfactorios para módulos bajo deformación controlada entre 7500 y 7800 MR, aunque los daños existentes no corresponden a una fatiga convencional.

VÍA GUARANDA - BALZAPAMBA

Estado:

Una inspección inicial al momento de extraer los núcleos reportan en dicha vía un 3% de fisura de piel de cocodrilo, sin deformaciones permanentes o ahuellamiento.

Foto 1

Resultado:

DADAMETROS		MUESTRA	
PARAMETROS	Briqueta # 1 abajo	Briqueta # 2 abajo	Briqueta # 9 abajo
Deformación Inicial (μ strain)	135	135	135
Sm (Mpa) a Def. Controlada	3143	3773	3288
σ1 (kPa) calculada	207	248	217
σ1 (kPa) Aproximado calculado	200	250	250
Sm2 (Mpa) a σ calculada	2932	3573	2985
σ2 (kPa) calculada	193	235	197
σ2 (kPa) Aproximado calculado	200	250	200
Sm 3 (Mpa) a σ2 calculada	2903	3484	2987
σ3 (kPa) calculada	191	229	197
σ3 (kPa) Aproximado calculado	200	230	200
Repeticiones Nf para fatiga con \mathcal{E} de 135 µstrain.	>10000	>10000	>10000

Tabla 3.2 Prueba de repeticiones permisibles, vía Guaranda -Balzapamba.

Comentario:

En la tabla resumen de cálculos para el desarrollo del procedimiento propuesto el número de repeticiones es mayor en todos los casos que el valor de referencia de 10,000 repeticiones, aseverando que la mezcla se encuentra en buenas condiciones.

VIA INTERNA URBANIZACION LA BEATA

Estado:

La mezcla presenta síntomas de peladura en la capa superior y elevada porosidad, más algunos problemas de segregaciones.

Resultado de la prueba:

DADAMETROS		MUESTRA			
PARAIVIETRUS	Briqueta P1	Briqueta P2	Briqueta P3		
Deformación Inicial (μ strain)	135	135	135		
Sm (Mpa) a Def. Controlada	4685	3749	4688		
σ1 (kPa) calculada	309	247	309		
σ1 (kPa) Aproximado calculado	300	250	300		
Sm2 (Mpa) a σ calculada	4386	3492	4687		
σ2 (kPa) calculada	289	230	309		
σ2 (kPa) Aproximado calculado	300	200	300		
Sm 3 (Mpa) a σ2 calculada	4287	3584	4506		
σ3 (kPa) calculada	282	236	297		
σ3 (kPa) Aproximado calculado	290	240	300		
$\begin{array}{c} \text{Repeticiones Nf para fatiga} \\ \text{con } \& \text{ de } 135 \mu \text{strain.} \end{array}$	>10000	>10000	4160		

Tabla 3.3 Prueba de repeticiones permisibles, vía Urbanización La Beata.

Comentario:

Se observa que los ensayos pasan los 10,000 ciclos de carga pero el tercero dio un valor muy bajo, probablemente por corresponder a una zona segregada.

VÍA INTERCONEXIÓN (Refinería del Pacifico)

Estado:

La vía se encuentra en buen estado aunque algunos módulos bajo deformación controlada obtenidos en estudios preliminares habían sido relativamente bajos.

Foto 2

Resultado de la prueba:

DADAMETDOS		MUESTRA	
PARAMETROS	Abscisa 1+478 LD	Abscisa 1+010 LD	Abscisa 1+670 LD
Deformación Inicial (μ strain)	135	135	135
Sm (Mpa) a Def. Controlada	2859	2219	3299
σ1 (kPa) calculada	188	146	217
σ1 (kPa) Aproximado calculado	150	100	200
Sm2 (Mpa) a σ calculada	2769	2135	3015
σ2 (kPa) calculada	182	141	199
σ2 (kPa) Aproximado calculado	200	100	200
Sm 3 (Mpa) a σ2 calculada	2565	2338	2946
σ3 (kPa) calculada	169	154	194
σ3 (kPa) Aproximado calculado	170	160	200
$\begin{array}{c} \text{Repeticiones Nf para fatiga} \\ \text{con } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	>10000	>10000	>10000

Tabla 3.4 Prueba de repeticiones permisibles, vía Interconexión(Refinería del Pacifico)

Comentario:

Se observa que los ensayos pasan los 10,000 ciclos de carga aseverando un buen comportamiento a la fatiga.

Vía KM 26 - Puerto Inca

Estado:

El estado de la vía es bueno, sin fisuras ni deformaciones, aunque algunos módulos de rigidez obtenidos fueron bajos.

Foto 3

Resultado de la prueba:

DADAMETROS		MUESTRA			
FARAMETRUS	Briqueta 1S	Briqueta 2S	Briqueta 1I		
Deformación Inicial (μ strain)	135	135	135		
Sm (Mpa) a Def. Controlada	2558	2172	2238		
σ1 (kPa) calculada	168	143	147		
σ1 (kPa) Aproximado calculado	150	150	150		
Sm2 (Mpa) a σ calculada	2403	2212	2489		
σ2 (kPa) calculada	158	146	164		
σ2 (kPa) Aproximado calculado	150	150	150		
Sm 3 (Mpa) a σ2 calculada	2336	2144	2376		
σ3 (kPa) calculada	154	141	156		
σ3 (kPa) Aproximado calculado	160	150	160		
Repeticiones Nf para fatiga con ϵ de 135 µstrain.	>10000	>10000	>10000		

Tabla 3.5 Prueba de repeticiones permisibles, vía Km26 (PuertoInca)

Comentario: Se observa que los ensayos superan los 10,000 ciclos de carga por lo que de acuerdo al criterio se espera un buen comportamiento a la fatiga.

VÍANARANJAL RIO 7

Estado:

El estado de la vía es variable, presentando ciertos sectores con deterioros tipo piel de cocodrilo en el orden de 20 a 25% y otros con 5 a 10%. Los mayores deterioros corresponden a sitios donde la mezcla presenta un módulo de rigidez muy alto.

Foto 3

Comentario:En esta vía en particular se decidió realizar un estudio adicional para ver el comportamiento del procedimiento entre los módulos de rigidez muy variables. En los resultado se observa q dos briquetas tienen valores de repeticiones para la deformación de 135 µ-strain por debajo de 10000. Estas corresponden a módulos muy altos. Por encima de 10000 MPa. Para el modulo más elevado de la tabla el equipo NAT quedo fuera de rango.

				MUE	STRA			
PARAWE I KUS	Briqueta # 9 Abscisa 40+000	Briqueta # 19	Briqueta # 2 Abscisa 5+000	Briqueta # 7 Abscisa 30+000	Briqueta # 3 Abscisa 10+000	Briqueta # 16 Abscisa 22+500	Briqueta # 4 15+000	Briqueta # 14 Abscisa 32+500
Deformación Inicial (μ strain)	135	135	135	135	135	135	135	135
Sm (Mpa) a Def. Controlada	2340	4649	5194	7313	7836	10106	10802	12773
o1 (kPa) calculada	154	306	342	482	516	666	711	841
σ1 (kPa) Aproximado calculado	150	300	350	500	500	650	700	800
Sm2 (Mpa) a σ calculada	2786	4415	4395	6731	7347	9422	9810	12946
σ2 (kPa) calculada	183	291	289	443	484	620	646	853
σ2 (kPa) Aproximado calculado	200	300	300	450	500	600	650	850
Sm 3 (Mpa) a o2 calculada	2989	4302	4327	6751	7283	9266	9597	11374
σ3 (kPa) calculada	197	283	285	445	480	610	632	749
o3 (kPa) Aproximado calculado	200	290	290	450	480	610	640	750
Repeticiones Nf para fatiga con \pounds de 135 µstrain.	>10000	>10000	>10000	>10000	>10000	2964	3486	No se realizo *
		- - -	-					

Tabla 3.6 Prueba de repeticiones permisibles, vía Naranjal Rio 7

CAPITULO 4. Predicción del comportamiento a la fatiga en pavimentos diseñados por AASHTO 93

4.1 INTRODUCCION

La presente investigación se realizó en forma simultánea al trabajo de titulación de José Gabriel Jaramillo, el cual estudia el comportamiento de las mezclas asfálticas ante las deformaciones plásticas. Un análisis parecido se realiza en esta investigación con la diferencia que la misma se enfocara en el comportamiento a la fatiga de capas asfáltica.

El comportamiento de la mezcla asfáltica está directamente relacionada con las temperaturas, debido a que mayor temperatura su rigidez disminuye y a bajas temperaturas viceversa. Otro parámetro que ayuda a la formación de grietas en el pavimento es el porcentaje de tráfico, por lo cual el presente trabajo de titulación se enfoca en analizar el comportamiento de la mezcla asfáltica relacionando parámetros tales como el tráfico, espesor de la capa asfáltica y temperatura.

Utilizando el programa ALIZE se puede determinar la deformación por tracción en la parte inferior de la capa asfáltica para un posterior cálculo de daño total que se genera en la estructura durante su explotación, considerandolas diferentes regiones del Ecuadorempleando la hipótesis de Miner.

4.2 PROCEDIEMINETO DEL ESTUDIO

4.2.1 ESTRUCTURA DE PAVIMENTO A UTILIZARSE.

Para el diseño de las estructuras de pavimentos se utilizó el método de diseño vigente en el ECUADOR (AASHTO 93), Se analizan 24 estructuras (ver Anexo B) que corresponde a una matriz que relaciona 6 valores diferentes para el numero de repeticiones de ejes simples equivalente de 8.2 Ton por el carril de diseño durante el periodo de diseño (ESAL). En este caso son : 20,000 ; 50,000 ; 500,000 ; 25,000,000 ; 50,000,000 , con cuatro módulos resiliente de subrasante que son de : 25 ; 50 ; 75 y 90 Mpa. Las mismas estructuras se analizan en el trabajo de titulación de José Jaramillo.

4.2.2 ANALISIS DEL TRANSITO.

Para el desarrollo de la investigaciones se considera el tránsito de la carretera E25, que corresponde al tramo "Duran – Jujan" a lo largo de un año. En la tabla que se muestra se obtienen los porcentajes de vehículos pesados representativos por hora para cada mes.

Los datos se obtuvieron del trabajo de titulación de José Jaramillo que se llevó a cabo simultáneamente a esta investigación (VER ANEXO C)

4.2.3 CALCULO DEL NÚMERO DE APLICACIONES DE CARGA.

Para determinar la aplicación de carga a partir del el ESAL de diseño, se divide para doce meses que corresponde a un año esto es multiplicándose entonces por el porcentaje vehicular, por ejemplo para casos de un ESAL de diseño de 20,000 con un porcentaje horario vehicular de 1.97 se tendrá:

4.2.4 ANALISIS DE LA TEMPERATURA

En el trabajo de titulación antes mencionado desarrollado por José Jaramillo, se obtiene las temperaturas de la carpeta asfáltica en función de la temperatura ambiente proporcionada por el DAC (Dirección de Aviación Civil)

Se desarrolla el análisis para las Regiones del Ecuador a una profundidad de 5 cm:

REGION COSTA

En la siguiente Tabla 4.1 se observa las temperaturas horarias de la carpeta asfáltica para todos los meses del año.

MESES			TEM	PERA	TUR/	A DE (САРА	ASF	ALTIC	SA °C		
IVIESES	0	1	2	3	4	5	6	7	8	9	10	11
ENERO	33	32	32	31	30	30	29	30	30	31	32	34
FEBRERO	34	32	32	31	30	30	29	29	30	31	32	34
MARZO	34	33	32	31	31	31	30	30	31	32	33	35
ABRIL	33	32	31	31	30	30	30	30	31	32	33	35
MAYO	31	30	30	29	28	28	28	29	29	30	31	33
JUNIO	30	29	28	28	27	27	28	28	29	30	31	33
JULIO	29	28	27	27	26	26	27	27	28	29	30	32
AGOSTO	28	27	27	26	26	26	27	27	28	29	30	32
SEPTIEMBRE	29	28	28	27	27	27	27	28	29	30	31	33
OCTUBRE	30	29	28	28	27	27	28	28	29	30	31	33
NOVIEMBRE	30	29	29	28	28	28	28	29	29	31	32	34
DICIEMBRE	32	30	30	29	29	29	29	29	30	31	32	34

MESES			TEM	PERA	TUR/	A DE (САРА	ASF	ALTIC	SA °C		
INIESES	12	13	14	15	16	17	18	19	20	21	22	23
ENERO	40	42	43	43	43	41	39	38	37	35	35	34
FEBRERO	40	42	43	44	43	42	39	38	38	35	35	34
MARZO	40	42	43	44	44	42	40	38	38	36	35	35
ABRIL	41	43	44	45	44	43	40	38	38	36	35	34
MAYO	39	41	41	42	41	40	38	37	36	34	33	32
JUNIO	38	40	40	41	41	40	37	35	34	32	31	30
JULIO	37	39	40	41	40	39	36	34	33	31	30	29
AGOSTO	38	40	40	42	41	40	37	34	33	31	30	29
SEPTIEMBRE	39	40	41	43	43	41	38	35	34	32	31	30
OCTUBRE	38	41	41	43	42	41	37	35	34	32	31	31
NOVIEMBRE	39	41	41	42	42	41	38	35	34	32	31	31
DICIEMBRE	40	42	43	45	44	43	40	39	38	35	34	33

Tabla 4.1 Temperatura capa asfáltica Región Costa.

La distribución de la temperatura de la carpeta asfáltica en la Región Costa se encuentra en el rango de 26 a 45 º c.

REGION SIERRA

En la siguiente Tabla 4.2 se observan las temperaturas horarias de la carpeta asfáltica para los meses del año.

MEGEG			TI	EMPE	RATUR	A DE (CAPA	ASFAL	TICA °	°C		
	0	1	2	3	4	5	6	7	8	9	10	11
ENERO	17	16	16	16	15	15	15	15	15	19	24	27
FEBRERO	17	16	16	16	15	15	15	15	15	17	22	26
MARZO	18	17	16	16	15	15	15	15	16	19	24	27
ABRIL	17	16	16	16	15	15	14	14	15	18	23	26
MAYO	17	17	16	16	15	15	15	15	16	19	24	27
JUNIO	17	16	15	15	14	14	13	14	15	18	23	26
JULIO	18	17	17	17	15	15	14	14	15	18	23	25
AGOSTO	18	17	16	16	15	15	13	14	15	18	23	26
SEPTIEMBRE	18	17	16	16	14	14	13	14	15	19	25	28
OCTUBRE	18	17	16	16	14	14	13	14	15	19	25	28
NOVIEMBRE	17	16	16	16	15	15	13	14	16	19	25	28
DICIEMBRE	17	16	15	15	14	14	14	15	16	19	24	28

MEGEG				TEN	/IPERAT	URA DE	CAPA AS	SFALTIC	A °C			
IVILOLO	12	13	14	15	16	17	18	19	20	21	22	23
ENERO	34	37	38	38	34	30	39	38	37	35	35	34
FEBRERO	32	35	35	35	31	28	39	38	38	35	35	34
MARZO	33	36	36	36	32	29	40	38	38	36	35	35
ABRIL	32	35	36	36	33	29	40	38	38	36	35	34
MAYO	32	35	35	36	32	28	38	37	36	34	33	32
JUNIO	32	34	34	34	31	27	37	35	34	32	31	30
JULIO	31	34	34	34	30	27	36	34	33	31	30	29
AGOSTO	32	35	34	35	31	27	37	34	33	31	30	29
SEPTIEMBRE	34	36	35	35	31	28	38	35	34	32	31	30
OCTUBRE	34	36	35	35	31	28	37	35	34	32	31	31
NOVIEMBRE	35	38	38	37	32	28	38	35	34	32	31	31
DICIEMBRE	34	37	37	37	33	28	40	39	38	35	34	33

Tabla 4.2 Temperatura capa asfáltica Región Sierra.

La variación de temperatura en la carpeta asfáltica de la Región Sierra es de 13 a 36 $^{\circ}$ c.

REGION AMAZONICA

La distribución horaria de la temperatura de la capa asfáltica del durante el año.

MEGES			TEM	PERA	TUR/	A DE (САРА	ASF	ALTIC	SA °C		
MESES	0	1	2	3	4	5	6	7	8	9	10	11
ENERO	32	31	30	29	29	29	28	28	29	30	31	33
FEBRERO	31	30	30	29	28	28	27	27	28	29	29	31
MARZO	31	30	29	29	28	28	27	27	28	29	30	31
ABRIL	30	29	29	28	27	27	27	27	29	30	31	33
MAYO	31	30	29	28	28	27	27	28	28	29	30	32
JUNIO	29	28	27	27	26	26	27	27	28	29	29	31
JULIO	28	27	26	26	25	25	26	26	27	28	29	31
AGOSTO	27	26	26	26	26	26	26	26	27	28	29	31
SEPTIEMBRE	30	29	29	28	28	27	27	27	28	30	31	33
OCTUBRE	29	28	28	27	26	26	27	28	29	31	32	35
NOVIEMBRE	29	28	28	27	27	27	27	28	29	31	32	34
DICIEMBRE	31	29	29	28	28	28	27	28	29	31	32	35

MEGEG			TEM	PERA	TUR/	A DE (CAPA	ASF	ALTIC	A°C		
MESES	12	13	14	15	16	17	18	19	20	21	22	23
ENERO	38	40	41	43	42	41	39	37	37	35	34	33
FEBRERO	37	39	39	40	40	39	37	36	35	33	33	32
MARZO	37	39	40	41	41	40	38	37	36	34	33	33
ABRIL	38	40	41	42	42	40	38	36	35	33	32	31
MAYO	37	39	40	41	40	39	36	35	35	33	32	31
JUNIO	36	38	39	40	40	39	36	34	34	32	31	30
JULIO	36	38	38	40	39	38	35	33	33	31	30	29
AGOSTO	36	38	39	40	40	39	37	34	33	31	30	29
SEPTIEMBRE	39	41	42	43	42	41	38	36	36	33	32	31
OCTUBRE	41	42	43	43	41	40	37	34	34	31	30	29
NOVIEMBRE	40	42	42	43	43	41	38	35	34	32	31	30
DICIEMBRE	39	42	42	43	43	41	38	37	36	33	32	31

Tabla 4.3 Temperatura capa asfáltica Región Amazonia.

La tabla de resumen se observa que la temperatura mínima de la región amazónica es de 25 ° c y la máxima de 43 ° c.

4.2.5 CALCULO DEL MODULO DE RIGIDEZ.

La rigidez es la capacidad que tiene un elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones. Se aplica en nuestro trabajo la siguiente ecuación que relaciona el módulo de rigidez de la capa asfáltica en función de la temperatura para diferentes regiones del ecuador (VER ANEXO D).

.Eac (Mpa) = 10948e^{-0,053T(°C)}

4.2.6 DETERMINACION LA DEFORMACION HORIZONTAL POR TRACCION.

Se utilizó el Programa ALIZE 3 desarrollado en Francia. El programa se utilizó para cada estructura considerando la temperatura de las regiones del Ecuador al igual que el módulo de rigidez correspondiente de la capa asfáltica.

Ejemplo corrida ALIZE.

C2SR250.T30: Bloc de notas									
Archivo Edición Formato Ver	Ayuda								
Titulo del e Denominacion	studio: C250 de la secci	R250.T30 ion:		^					
ENTRADA DE DATOS									
				=					
	Espesor (cm)	Modulo de Elasticidad (kp/cm2)	Coeficiente de Poisson						
! CA ! . !	з.	22330.	.35						
CA .	з.	22330.	. 35						
	4.	22330.	.35						
ι	15.	1241.	. 35						
	30.	651.	.35						
	Infinito	250.	. 50						
Radio de la huella de carga: 10.00 cm									
Distancia entre centros de huellas de carga: 30.00 cm									
Presion trar	smitida por	cada rueda: 6.50 kp/cm2		-					

Figura 4.1 Ingreso de datos al programa Alize.

C2SR2	50.T30: Bloc	de notas					X
Archivo	Edición F	ormato Ver Ayuda					
1			SALIDA DE	RESULTADOS			*
	!	!	!Deformacion!	Tension	!Deformacion!	Tension !	
	! Z		! Tangencial! ! (1/1000) !	Tangencial (kp/cm2)	! Vertical ! ! (1/1000) !	(kp/cm2)	
			1000 6	10 007 0	2256 6		
	1 0.	i i	.4900 C	10.09/ B	! 5250 C !	0.300 A	
	-	! CA					
	1		.1815 C	8.268 B	1628 C	5.637 B	
	3.	!Adner1do !	.1815 C	8.268 B	1628 C	5.637 B	_
	1	1 64					
	1	1					
	6.	! !Adherido	0916 B	-1.190 C	.1865 A !	3.600 B	
	1	1	0916 в	-1.190 C	.1865 A	3.600 B	E
	1	CA					
	-	-	! 4684 B	-13.888 B	!	1.542 в	
	10.	!Adherido					
			4684 B	001 C	і 1.1954 В і і і	1.542 B	
	-	!					
	!	1	5153 C	538 C	.7982 C	.669 C	
	25.	!Adher1do !	5153 C	111 c	1.1026 C	.669 C	
	1	1				_	
	1	i .	i i		i i		-

Figura 4.2 Resultados del programa Alize.

De los resultados obtenidos se tomaran las deformaciones tangenciales por tracción en la parte inferior de la capa asfáltica para los análisis por fatiga. Cálculo (VER ANEXO D).

4.2.7 Cálculo del número de aplicaciones por falla.

En la determinación del fallo Ni, se aplica la ecuación de SHELL que se describe a continuación:

Nf =
$$\begin{pmatrix} 918 \ (0,856. \ Vb + 1,08) \\ ----- \\ Sm^{0.36} \ . \ (\underline{Ch}) \\ 10^{-6} \end{pmatrix}^{5} . SF$$

Ch = deformación horizontal por tracción máxima en la parte inferior de la capa asfáltica (mm/mm).

Sm = módulo de rigidez de la mezcla (MPa).

Vb = porcentaje de asfalto en volumen (11%).

SF = Shift factor

4.2.8 Cálculo del daño total acumulado.

Se determina el daño total de la estructura con la siguiente ecuación:

$$r \quad r$$
$$D = \sum d_i = \sum (\underline{ni})$$
$$i=1 \quad i=1 \quad N_i$$

El daño total es la sumatoria de los danos correspondiente a los meses del año con sus respectivos módulo y ESAL de diseño (VER ANEXO C).

4.3 RESULTADOS OBTENIDOS

4.3.1Daños obtenidos para los ejes de diseño empleando hojas de Excel.

- Daño total en la región Costa para diferentes ESAL de diseño.

COSTA		DAÑOS PARA ESAL DE DISEÑO									
Mr (MPa)	20,000	50,000	500,000	5,000,000	25,000,000	50,000,000					
25	0.2042	0.2273	0.4472	0.5503	1.1122	1.1912					
50	0.1225	0.1810	0.1622	0.3602	0.6277	0.5936					
75	0.0573	0.0699	0.2040	0.5170	1.1440	1.1980					
90	0.0410	0.0518	0.1600	0.4522	1.0110	0.9817					

Tabla 4.4 Daños para ESAL de diseño Región Costa

SIERRA		DAÑOS PARA ESAL DE DISEÑO									
Mr (MPa)	20,000	50,000	500,000	5,000,000	25,000,000	50,000,000					
25	0.3342	0.2958	0.5304	0.4700	0.8869	0.9010					
50	0.1961	0.2274	0.2079	0.3009	0.5175	0.4843					
75	0.098	0.0941	0.2459	0.4037	0.8451	0.8708					
90	0.0717	0.071	0.1947	0.3377	0.7545	0.7199					

- Daño total en la región Sierra para diferentes ESAL de diseño.

Tabla 4.5 Daños para ESAL de diseño región Sierra

- Daño total en la región Amazónica para diferentes ESAL de diseño.

AMAZONICA		DAÑ	IOS PARA E	SAL DE DIS	EÑO	
Mr (MPa)	20,000	50,000	500,000	5,000,000	25,000,000	50,000,000
25	0.2085	0.2228	0.4355	0.5454	1.0800	1.1526
50	0.1247	0.1764	0.1608	0.3547	0.6199	0.5849
75	0.0590	0.0690	0.1994	0.5095	1.1000	1.1524
90	0.0424	0.0516	0.1570	0.4373	0.9775	0.9468

Tabla 4.6 Daños para ESAL de diseño región Amazónica

4.3.2 Número de ejes permisibles que soportarían los espesores de mezclas empleados en los diferentes diseños.

Estos ejes corresponden al diseño por fatiga igual a 1.0 empleados en las hojas de Excel para el procesamiento.

COSTA		No de E	SAL permisit	oles en funció	n de H (cm):		ECUACION		
Mr (MPa)	5	7.5	10	14	18	20	Y: ESAL X: ES	PESOR, cm	
25	98,000	220,000	1,120,000	9,150,000	22,550,000	42,000,000	y = 34.809 x ^{4.6317}	R ² =0.9765	
50	163,500	278,000	3,100,000	13,900,000	40,000,000	84,500,000	y = 46.257 x ^{4.7526}	R ² =0.9669	
75	349,000	720,000	2,450,000	9,700,000	24,900,000	42,000,000	y = 765.39 x ^{3.5836}	R ² =0.9824	
90	488,500	970,000	3,150,000	11,100,000	24,900,000	51,000,000	y = 1468.9 x ^{3.397}	R ² =0.9795	

Tabla 4.7No de ESAL permisible en función de H(cm), región Costa.

SIERRA		No de E	SAL permisit	oles en funció	n de H (cm):		ECUACION		
Mr (MPa)	5	7.5	10	14	18	20	Y: ESAL X: ES	SPESOR, cm	
25	60,000	169,000	945,000	10,700,000	28,500,000	55,500,000	y = 8.3309 x ^{5.2077}	R ² =0.9793	
50	102,000	220,000	2,410,000	16,700,000	49,000,000	103,500,000	y = 12.247 x ^{5.2789}	R ² =0.9744	
75	205,000	530,000	2,040,000	12,400,000	29,550,000	57,700,000	y = 163.55 x ^{4.2044}	R ² =0.9844	
90	280,000	720,000	2,580,000	14,900,000	33,500,000	69,500,000	y = 278.28 x ^{4.077}	R ² =0.9841	

Tabla 4.8 No de ESAL permisible en función de H (cm), región Sierra.

AMAZONIA		No de E	SAL permisil	bles en funció	in de H (cm):		ECUACION		
Mr (MPa)	5	7.5	10	14	18	20	Y: ESAL X: ES	SPESOR, cm	
25	96,000	224,500	1,151,000	9,180,000	24,000,000	43,500,000	$y = 32.313 x^{4.6714}$	R ² =0.9784	
50	160,500	284,000	3,110,000	14,100,000	41,000,000	85,500,000	$y = 44.542 \text{ x}^{4.772}$	R ² =0.9687	
75	339,000	727,500	2,520,000	9,850,000	23,000,000	43,500,000	y = 760.27 x ^{3.585}	R ² =0.9835	
90	473,000	970,000	3,200,000	11,450,000	26,000,000	52,900,000	y = 1318.90 x ^{3.448}	R ² =0.9809	

Tabla 4.9 No de ESAL permisible en función de H (cm), Región Amazonia.

4.3.3 Calculo de espesores necesarios para soportar los ESAL de diseño.

COSTA		Espesores necesarios para soportar ESAL de diseño:								
Mr (MPa)	20,000	50,000	100,000	500,000	1,000,000	5,000,000	10,000,000	25,000,000	50,000,000	
25	3.9	4.8	5.6	7.9	9.2	13.0	15.1	18.4	21.3	
25	1.1	2.7		2.1		1.0		-0.4	-1.3	
50	3.6	4.3	5.0	7.1	8.2	11.5	13.3	16.1	18.6	
50	1.4	3.2		2.9		2.5		1.9	1.4	
75	2.5	3.2	3.9	6.1	7.4	11.6	14.1	18.2	22.1	
75	2.5	4.3		3.9		2.4		-0.2	-2.1	
00	2.2	2.8	3.5	5.6	6.8	11.0	13.4	17.6	21.6	
90	2.8	4.7		4.4		3.0		0.4	-1.6	
AASHTO 93	5 cm	7,5 cm		10 cm		14 cm		18 cm	20 cm	

NOTA: En rojo la diferencia entre el espesor obtenido por AASHTO 93 y el espesor necesario para soportar los ESAL de diseño.

Tabla 4 10Es	nesor necesario	en función	de ESAL	Región Costa
		CITICION		Region Costa.

SIERRA	Espesores necesarios para soportar ESAL de diseño:								
Mr (MPa)	20,000	50,000	100,000	500,000	1,000,000	5,000,000	10,000,000	25,000,000	50,000,000
25	4.5 <mark>0.5</mark>	5.3 <mark>2.2</mark>	6.1	8.3 1.7	9.4	12.9 1.1	14.7	17.5 <mark>0.5</mark>	20.0 0.0
50	4.1 <mark>0.9</mark>	4.8 2.7	5.5	7.5 2.5	8.5	11.6 2.4	13.2	15.7 2.3	17.9 2.1
75	3.1 <mark>1.9</mark>	3.9 <mark>3.6</mark>	4.6	6.7 <mark>3.3</mark>	8.0	11.7 2.3	13.8	17.1 <mark>0.9</mark>	20.2 - <mark>0.2</mark>
90	2.9 <mark>2.1</mark>	3.6 <mark>3.9</mark>	4.2	6.3 <mark>3.7</mark>	7.4	11.1 2.9	13.1	16.4 <mark>1.6</mark>	19.4 <mark>0.6</mark>
AASHTO 93	5 cm	7,5 cm		10 cm		14 cm		18 cm	20 cm

NOTA: En rojo la diferencia entre el espesor obtenido por AASHTO 93 y el espesor necesario para soportar los ESAL de diseño.

Tabla 4.11	Espesor necesario	en función d	le ESAL,	Región Sierra.
------------	-------------------	--------------	----------	----------------

AMAZONIA	Espesores necesarios para soportar ESAL de diseño:								
Mr (MPa)	20,000	50,000	100,000	500,000	1,000,000	5,000,000	10,000,000	25,000,000	50,000,000
25	4.0	4.8	5.6	7.9	9.1	12.9	15.0	18.2	21.1
	1.0	2.7		2.1		1.1		-0.2	-1.1
50	3.6	4.4	5.0	7.1	8.2	11.4	13.2	16.0	18.5
	1.4	3.1		2.9		2.6		2.0	1.5
75	2.5	3.2	3.9	6.1	7.4	11.6	14.1	18.2	22.1
	2.5	4.3		3.9		2.4		-0.2	-2.1
90	2.2	2.9	3.5	5.6	6.8	10.9	13.3	17.4	21.3
	2.8	4.6		4.4		3.1		0.6	-1.3
AASHTO 93	5 cm	7,5 cm		10 cm		14 cm		18 cm	20 cm

NOTA: En rojo la diferencia entre el espesor obtenido por AASHTO 93 y el espesor necesario para soportar los ESAL de diseño.

Tabla 4.12 Espesor necesario en función de ESAL, Región Amazonia.

Figura 4.3. Relaciones entre los ESAL y los espesores de capa asfáltica requeridas para estructuras diseñadas por AASHTO 93. Región Costa

Figura 4.4. Relaciones entre los ESAL y los espesores de capa asfáltica requeridas para estructuras diseñadas por AASHTO 93. Región Sierra

Figura 4.5. Relaciones entre los ESAL y los espesores de capa asfáltica requeridas para estructuras diseñadas por AASHTO 93. Región Amazónica
5. CONCLUSIONES Y RECOMENDACIONES.

5.1 CONCLUSIONES

1- Los resultados obtenidos con la propuesta de prueba de fatiga no permiten hasta el momento validar el mejor o peor desempeño de una capa asfáltica a la fatiga. Los estudios realizados sobre núcleos permiten solo concluir que existirá un fallo seguro en mezclas con módulo de rigidez bajo deformación controlada superiores a 10.000 MPa, que es un valor muy alto donde este fallo es potencialmente evidente.

Independientemente de la rigidez que puede tener un núcleo de capa asfáltica, lo que está en función de su esqueleto pétreo compactado más el contenido y tipo de asfalto ya envejecido que posea, dicha mezcla debe presentar cierto nivel de daño por fatiga difícil de cuantificar. Al respecto, debe considerarse que la relación entre la deformación unitaria de 135 microstrain y los 10.000 ciclos de carga fue obtenida por correlaciones con pruebas de fatiga sobre núcleos sacados de capas asfálticas con tiempos de colocación entre 3 y 4 años. Sin embargo, en 4 de las 6 vías estudiadas el tiempo de colocación no llegaba a 1 ó 2 años.

2- Al aplicar el método de predicción de fatiga de Shell a pavimentos flexibles diseñados por AASHTO 93, para diferentes módulos resiliente de subrasante y variando los ESAL de diseño, se observa que los daños calculados por la hipótesis de Miner son variables, pudiendo encontrarse los espesores de capa asfáltica sobrediseñados en la mayoría de los casos para las tres regiones geográficas analizadas: Costa, Sierra y Amazonía. Es conveniente aclarar que el contenido de

asfalto empleado en estos análisis en la ecuación de predicción de Shell fue de 11% (en volumen), que es un valor conservador. Un contenido de asfalto de 13% hubiese disminuido en un 30 a 50% los daños mostrados, incrementando los sobrediseños. Solo en las regiones Costa y Amazonía, para los diseños con ESAL iguales o mayores que 25 millones se obtendrían daños totales cercanos o superiores a 1.0, lo que indicaría el fallo por fatiga.

Lo antes expresado indica que los espesores de capa asfáltica utilizados en la mayor parte de las combinaciones analizadas deben soportar un número de ESAL superiores a los considerados en su diseño por AASHTO 93.

5.2 RECOMENDACIONES

- 1- Continuar los estudios empleando la metodología de prueba analizada para el control de la fatiga, pero haciendo énfasis en briquetas fabricadas en planta, donde el papel de una prueba relativamente rápida de control de calidad es de gran interés.
- 2- Realizar la comparación y ajustes de ser necesarios, de los parámetros de la prueba (10.000 ciclos para deformación unitaria de 135 microstrain), obtenidos para núcleos de diferentes vías, con los parámetros que se obtendrían de briquetas con mezclas frescas de plantas.
- 3- Emplear los gráficos presentados que relacionan los espesores necesarios o recomendados con los ESAL, para ajustar los diseños que se realicen por AASHTO 93; considerando para las capas de subbase y base de agregados materiales que cumplan las exigencias del MTOP. En estas relaciones también se involucran y deben considerarse los módulos resiliente de la subrasante.

BLIOGRAFÍA

Macero, W. (2014) Evaluación de resistencia a la fatiga de mezclas asfálticas y determinación de puntos óptimos para su control. (Ed.1), Ecuador: Autor.

Rondón, H., Reyes, F., González, L., Vásquez, S. (2012) *Ahuellamiento y fatiga en mezclas asfálticas*. (Ed.1), Colombia: UD

Bonnaure, F., A. Gravois, and J. Udron, "A New Method for Predicting The Fatigue Life of Bituminous Mixes," Association of Asphalt Paving Technologists, Vol. 49 Proc., Louisville, KY, Feb 1980.

De La Roche, C., and N. Riviere, "Fatigue Behavior of Asphalt Mixes: Influence of Laboratory Test Procedures on Fatigue Performance," Eight International Conference on Asphalt Pavements, Vol. 2 Proc., Seattle, WA, Aug, 1997.

Di Benedetto, H., A. A. Soltani, and P. Chaverot, "Fatigue Damage for Bituminous Mixtures: A Pertinent Approach," Association of Asphalt Paving Technologists, Vol. 65 Proc., Baltimore, MA, Mar 1996.

El-Basyouny, and M. Witczak, "Development of the Fatigue Cracking Models for the 2002 Design Guide," Presented at the 84th Annual Meeting of the Transportation Research Board, Jan 2005.

Finn, F., C. L Saraf, K. Kulkarni, K. Nair, W. Smith, and A. Abdullah, "Development of Pavement Structural Subsystems," NCHRP 291, Dec 1986

Francken, L., and J. Verstraeten, "Methods for Predicting Moduli and Fatigue Laws of Bituminous Road Mixes Under Repeated Bending," Transportation Research Record, No. 515, Washington, D.C., 1974. Hveem, F. N., "Pavement Deflections and Fatigue Failures," Highway Research Board, Bulletin 114, Washington D.C., 1955.

Miner, M. A., "Cumulative Damage in Fatigue," Transactions of the American Society of Mechanical Engineers, Vol. 67, 1945.

Monismith, C. L., and J. A. Deacon, "Fatigue of Asphalt Paving Mixtures," Transportation Engineering Journal, Proc. of the American Society of Civil Engineers, Vol. 95, No. TE2, May 1969.

Nishizawa, T., S. Shimeno, and M. Sekiguchi, "Fatigue Analysis of Asphalt Pavements with Thick Asphalt Mixture Layer," Eight International Conference on Asphalt Pavements, Vol. 2 Proc., Seattle, WA, Aug 1997.

Pell, P. S., and K. E. Cooper, "The Fatigue of Testing and Mix Variables on The Fatigue Performance of Bituminous Materials," Association of Asphalt Paving Technologists, Vol. 44 Proc., Phoenix, AZ, 1975.

ANEXOA : ENSAYO FATIGA

VIA GUARANDA BALZAPAMBA

URBANIZACION LA BEATA

VIA INTERCONECCION (REFINERIA DEL PACIFICO)

KM26 (PUERTO INCA)

VIA NARANJAL RIO 7

ANEXOB : DISEÑOS ESTRUCTURALES

✓ Cuatro diseños estructurales con módulo resiliente MR=250 kg/cm²

ESAL	5E + 03	
3	e-6 cm	CA
3	e-0 cm	
e=15 cm		Base
Ebg=447Kg/cm ²		
Mr=250Kg/cm ²		Subrasante

ESAL	5E + 04		
4	0-15 cm		CA
3.5	6-13	LIII	ĊA
e=15 cm		Base	
Ebg=909Kg/cm ²			
e=15 cm		Subbase	
Ebg=47	477Kg/cm²		
Mr=250Kg/cm ²		Subrasante	

ESAL	5E + 05		
3			
3	e=10	cm	CA
4			
e=15 cm		Base	
Ebg=1241Kg/cm ²			
e=30 cm		Subbase	
Ebg=65	LKg/cm ²		
M	r=250Kg/cm ²		Subrasante

ESAL	5E + 06		
5			
5	e=14 cm		CA
4			
e=28 cm		Base	
Ebg=1644Kg/cm ²			
e=30 cm		Subbase	
Ebg=65	LKg/cm ²		
Mr=250Kg/cm ²		Subrasante	

ESAL	5E + 07		
6			
6	e=20	cm	CA
8			
e=30 cm		Base	
Ebg=2035Kg/cm ²			
e=45 cm		Subbase	
Ebg=78	LKg/cm²		
Mr=250Kg/cm ²		Subrasante	

ESAL	5E + 08		
6			
6	e=20	cm	CA
8			
e=30 cm		Base	
e=40 cm		Subbase	
Ebg=741Kg/cm ²			
Mr=250Kg/cm ²		Subrasante	

ESAL	5E + 03	
3	o-6 cm	CA
3	e-0 (111	
e=18 cm		Base
Ebg=1035Kg/cm ²		
Mr=500Kg/cm ²		Subrasante

ESAL	5E + 04		
4	o_1⊑ om		CA
3.5	e-15		CA
e=15 cm		Base	
Ebg=953Kg/cm ²			
Mr=500Kg/cm ²		Subrasante	

ESAL	5E + 05		
3			
3	e=10	cm	CA
4			
e=15 cm		Base	
Ebg=1818Kg/cm ²			
e=15 cm		Subbase	
Ebg=95	Ebg=953Kg/cm ²		
Mr=500Kg/cm ²		Subrasante	

✓ Cuatro diseños estructurales con módulo resiliente MR=500 kg/cm²

ESAL	5E + 06		
5			
5	e=14	cm	CA
4			
e=15 cm		Base	
Ebg=2287Kg/cm ²			
e=15 cm		Subbase	
Ebg=120	0Kg/cm ²		
Mr=500Kg/cm ²		Subrasante	

ESAL	5E + 07		
6	e=20 cm		CA
6			
8			
e=20 cm		Base	
Ebg=2826Kg/cm ²			
e=30 cm		Subbase	
Ebg=130	2Kg/cm ²		
Mr=500Kg/cm ²		Subrasante	

	5E + 08		
6			
6	e	=18 cm	CA
6			
e=20 cm Ebg=2064Kg/cm ²		Base	
e=25 cm Ebg=1200Kg/cm ²		Subbase	
Mr=500Kg/cm ²		Subrasante	

	5E + 03	
3	0-6 cm	CA
3	e-0 (11	CA
e=12 cm		Base
Ebg=1293Kg/cm ²		
Mr=750Kg/cm ²		Subrasante

✓ Cuatro diseños estructurales con módulo resiliente MR=750 kg/cm²

ESAL	5E + 04	
4	0-75 cm	CA.
3.5	e=7.5 cm	CA
e=12 cm		Base
Ebg=1293Kg/cm ²		
Mr=750Kg/cm ²		Subrasante

ESAL	5E + 05		
3			
3	e=10 c	m	CA
4			
e=18 cm		Base	
Ebg=1552Kg/cm ²			
Mr=750Kg/cm ²		Subrasante	

ESAL	5E + 06	
5		
5	e=14 cm	CA
4		
e=23 cm		Base
Ebg=1733Kg/cm ²		
Mr=750Kg/cm ²		Subrasante

	5E + 07		
6			
6	e=20 cm		CA
8			
e=30 cm		Base	
Ebg=1953Kg/cm ²			
Mr=750Kg/cm ²		Subrasante	

	5E + 08	
6		
6	e=18 cm	CA
6		
e=28 cm		Base
Ebg=1894Kg/cm ²		
Mr=750Kg/cm ²		Subrasante

✓ Cuatro diseños estructurales con módulo resiliente MR=900 kg/cm²

	5E + 03	
3	o-6 cm	CA
3	e-0 (11	
e=10 cm		Base
Ebg=1430Kg/cm ²		
Mr=900Kg/cm ²		Subrasante

ESAL	5E + 04	
4	0-7 5 cm	CA
3.5	e=7.5 cm	
e=10 cm		Base
Ebg=1430Kg/cm ²		
Mr=900Kg/cm ²		Subrasante

ESAL	5E + 05		
3			
3	e=10	cm	CA
4			
e=15 cm		Base	
Ebg=1716Kg/cm ²			
Mr=900Kg/cm ²		Subrasante	

ESAL	5E + 06	
5		
5	e=14 cm	CA
4		
e=18 cm		Base
Ebg=1863Kg/cm ²		
Mr=900Kg/cm ²		Subrasante

	5E + 07		
6			
6	e=20	cm	CA
8			
e=25 cm		Base	
Ebg=2159Kg/cm ²			
Mr=900Kg/cm ²		Subrasante	

	5E + 08	
6		
6	e=18 cm	CA
6		
e=22 cm		Base
Ebg=2039Kg/cm ²		
Mr=900Kg/cm ²		Subrasante

ANEXO C : PORCENTAJE DE VEHÍCULOS PESADOS POR HORA

Hora	01:00	02:00	03:00	04:00	05:00	06:00	07:00	08:00	09:00	10:00	11:00	12:00
Mes	%	%	%	%	%	%	%	%	%	%	%	%
Enero	1.97	1.44	1.28	1.49	2.42	3.57	4.73	5.15	5.11	4.86	5.14	5.20
Febrero	2.33	1.67	1.50	1.69	2.57	3.64	4.79	5.15	5.03	4.65	4.93	5.04
Marzo	2.32	1.82	1.61	1.81	2.60	3.82	4.75	5.22	4.97	4.70	4.77	5.01
Abril	2.19	1.74	1.50	1.74	2.51	3.76	4.90	5.12	4.88	4.70	4.95	4.96
Mayo	2.25	1.72	1.47	1.59	2.57	3.78	4.81	5.05	4.84	4.72	4.95	5.10
Junio	2.03	1.50	1.34	1.59	2.60	3.89	4.76	5.00	5.08	4.82	5.11	5.18
Julio	2.02	1.52	1.38	1.55	2.64	3.87	4.82	4.95	5.02	4.96	5.17	5.15
Agosto	2.21	1.66	1.48	1.61	2.69	3.93	4.74	4.82	4.99	4.74	5.12	4.99
Septiembre	2.04	1.56	1.39	1.71	2.68	4.00	4.68	4.90	4.89	4.89	5.18	5.01
Octubre	2.12	1.65	1.43	1.82	2.71	3.96	4.63	4.81	4.75	4.73	5.04	5.31
Noviembre	2.09	1.59	1.42	1.68	2.67	4.02	4.67	4.80	4.85	4.84	5.28	5.25
Diciembre	2.19	1.70	1.57	1.75	2.78	4.00	4.77	4.78	4.79	4.78	5.12	5.11
Hora	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	00:00
Mes	%	%	%	%	%	%	%	%	%	%	%	%
Enero	5.13	5.26	5.37	5.48	5.55	5.99	5.61	5.17	4.35	3.74	3.29	2.69
Febrero	4.94	5.06	5.19	5.27	5.43	5.70	5.66	5.19	4.47	3.80	3.42	2.89
Marzo	4.95	5.00	5.06	5.31	5.45	5.72	5.48	5.05	4.51	3.86	3.34	2.87
Abril	5.00	5.01	5.20	5.36	5.53	5.69	5.41	5.00	4.59	3.91	3.44	2.91
Mayo	4.97	5.05	5.23	5.46	5.61	5.68	5.37	4.99	4.68	3.89	3.41	2.81
Junio	5.30	5.18	5.36	5.57	5.59	5.77	5.32	4.88	4.43	3.74	3.32	2.63
Julio	5.06	5.14	5.16	5.59	5.58	5.68	5.25	4.93	4.46	3.83	3.53	2.74
Agosto	4.87	5.04	5.19	5.38	5.50	5.63	5.36	5.01	4.54	4.00	3.62	2.88
Septiembre	5.05	5.01	5.37	5.42	5.40	5.64	5.33	4.94	4.56	4.03	3.49	2.80
Octubre	4.91	5.11	5.22	5.45	5.57	5.71	5.23	4.96	4.69	3.91	3.44	2.86
Noviembre	5.13	5.23	5.34	5.48	5.69	5.59	5.32	4.86	4.40	3.86	3.33	2.63
Diciembre	5.05	5.10	5.12	5.37	5.44	5.65	5.25	4.90	4.45	3.94	3.50	2.89

REGION COSTA

ANEXO D:DEFORMACIONES UNITARIAS Y MODULO DE RIGIDEZ

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	250	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Fac (MPa)	Def. unit. Trac.					
Pav. (°C)		µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
26	2760	783	624	420	258	185	161
27	2618	798	640	432	265	190	166
28	2483	814	657	444	273	196	171
29	2354	829	674	456	280	201	176
30	2233	845	691	468	288	207	181
31	2118	860	708	480	295	213	186
32	2008	875	726	493	304	218	191
33	1905	891	743	505	311	224	196
34	1806	905	760	518	319	230	201
35	1713	919	778	530	327	236	206
36	1625	934	796	543	335	241	211
37	1541	948	814	556	344	246	217
38	1461	961	832	569	352	252	222
39	1386	974	849	582	360	259	227
40	1314	987	867	595	369	264	232
41	1247	999	884	607	377	270	237
42	1182	1011	902	620	307	276	243
43	1121	1022	919	633	311	282	248
44	1063	1032	937	646	401	287	253
45	1008	1042	954	658	410	293	258

REGION COSTA

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	500	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Eac (MPa)	Def. unit. Trac.					
Pav. (° C)		µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
26	2760	703	590	353	238	168	145
27	2618	717	606	362	245	173	148
28	2483	732	623	371	251	177	152
29	2354	746	639	380	257	182	156
30	2233	759	656	389	264	186	160
31	2118	774	673	398	270	191	164
32	2008	787	691	407	277	195	168
33	1905	800	708	416	283	200	172
34	1806	814	726	425	290	205	176
35	1713	827	743	434	296	209	180
36	1625	840	761	443	303	214	184
37	1541	852	778	452	309	218	188
38	1461	864	796	461	316	222	192
39	1386	876	814	469	322	227	196
40	1314	887	833	478	328	231	199
41	1247	898	850	487	334	235	203
42	1182	909	868	495	341	240	207
43	1121	919	886	503	346	244	210
44	1063	928	904	511	353	247	214
45	1008	940	922	519	358	252	217

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	750	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Fac (MPa)	Def. unit. Trac.					
Pav. (° C)		µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
26	2760	614	498	361	247	182	159
27	2618	626	511	371	254	188	164
28	2483	637	524	381	262	193	171
29	2354	648	537	392	269	199	174
30	2233	659	550	402	277	205	179
31	2118	669	563	412	285	211	184
32	2008	680	576	422	293	217	189
33	1905	690	589	433	300	223	195
34	1806	700	602	443	309	229	200
35	1713	709	615	454	317	235	206
36	1625	719	628	464	359	241	212
37	1541	728	642	475	333	247	217
38	1461	737	655	485	341	253	223
39	1386	745	667	496	350	259	229
40	1314	753	680	507	358	266	234
41	1247	760	693	517	366	272	240
42	1182	767	705	527	375	278	246
43	1121	774	718	538	383	284	251
44	1063	779	730	548	392	290	257
45	1008	784	742	558	400	296	263

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	900	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Fac (MPa)	Def. unit. Trac.					
Pav. (° C)		µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
26	2760	578	414	346	242	179	154
27	2618	588	484	356	249	184	159
28	2483	598	496	365	256	189	163
29	2354	608	508	374	263	195	168
30	2233	618	521	384	271	200	173
31	2118	628	533	394	278	206	178
32	2008	637	544	403	286	212	183
33	1905	646	556	413	293	218	188
34	1806	655	568	423	301	223	193
35	1713	663	580	432	309	229	198
36	1625	672	592	442	317	235	204
37	1541	679	604	452	325	241	209
38	1461	687	616	462	333	247	214
39	1386	694	628	471	341	253	219
40	1314	701	640	481	349	259	224
41	1247	707	651	491	357	265	230
42	1182	713	662	500	365	271	235
43	1121	718	674	510	373	276	240
44	1063	722	684	519	380	282	245
45	1008	726	695	528	388	288	250

REGION SIERRA , REGION AMAZONICA

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	250	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media		Def. unit. Trac.					
Pav. (° C)	Eac (MPa)	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
13	5497	582	430	286	175	124	107
14	5213	596	443	295	181	128	111
15	4944	611	457	304	187	132	114
16	4689	626	471	314	192	136	118
17	4447	642	485	323	198	141	122
18	4218	657	499	334	205	145	126
19	4000	673	514	344	211	150	130
20	3793	688	529	354	218	155	134
21	3598	704	544	365	224	160	139
22	3412	719	559	376	231	165	143
23	3236	735	575	398	238	170	147
24	3069	751	591	398	244	175	152
25	2910	767	607	409	251	179	157
26	2760	783	624	421	258	185	161
27	2618	798	640	433	265	190	166
28	2483	814	657	444	273	196	171
29	2354	829	674	456	280	201	176
30	2233	845	691	468	288	207	181
31	2118	860	708	481	296	213	186
32	2008	875	726	493	304	218	191
33	1905	891	743	505	312	224	196
34	1806	905	760	518	319	230	201
35	1713	919	778	531	328	236	206
36	1625	934	795	544	336	241	211
37	1541	948	814	556	344	246	217
38	1461	961	832	569	352	252	222
39	1386	974	849	582	361	259	227

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	500	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Eco (MBo)	Def. unit. Trac.					
Pav. (° C)	Eac (IVIFa)	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
13	5497	522	402	247	165	115	98
14	5213	535	415	255	170	118	101
15	4944	549	428	262	176	122	104
16	4689	563	441	270	181	126	108
17	4447	576	455	278	186	130	111
18	4218	590	469	286	192	134	115
19	4000	604	483	294	197	138	118
20	3793	619	497	302	203	142	122
21	3598	633	512	311	208	147	126
22	3412	647	527	319	214	151	129
23	3236	661	543	328	220	155	133
24	3069	675	558	336	226	160	137
25	2910	689	574	345	232	164	141
26	2760	703	590	354	238	168	145
27	2618	717	606	363	245	173	148
28	2483	732	623	371	252	177	152
29	2354	746	640	380	258	182	156
30	2233	759	656	389	264	186	160
31	2118	774	674	398	271	191	164
32	2008	787	690	407	277	195	168
33	1905	800	708	416	283	200	172
34	1806	814	726	425	290	205	176
35	1713	827	734	434	297	209	180
36	1625	840	761	443	303	214	184
37	1541	852	779	452	309	218	188
38	1461	864	796	461	316	222	192
39	1386	876	815	469	322	227	196

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	750	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Eco (MBo)	Def. unit. Trac.					
Pav. (° C)		µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
13	5497	464	347	246	166	119	103
14	5213	476	358	255	171	123	107
15	4944	487	369	263	177	127	111
16	4689	499	379	271	183	132	114
17	4447	510	391	279	189	136	118
18	4218	522	402	288	195	141	123
19	4000	533	414	296	201	145	127
20	3793	545	425	305	207	150	131
21	3598	557	437	314	214	156	135
22	3412	568	449	323	220	161	140
23	3236	580	462	333	226	166	144
24	3069	591	474	342	233	171	149
25	2910	603	486	352	240	176	154
26	2760	614	498	362	247	182	159
27	2618	626	511	371	255	188	164
28	2483	637	524	382	262	193	171
29	2354	648	537	392	270	199	174
30	2233	659	550	402	277	205	179
31	2118	669	563	412	285	211	184
32	2008	680	576	423	293	217	189
33	1905	690	589	434	301	223	195
34	1806	700	602	444	309	229	201
35	1713	709	615	454	317	235	206
36	1625	719	628	465	359	241	212
37	1541	728	641	475	334	247	217
38	1461	737	654	486	342	253	223
39	1386	745	667	496	350	259	229

ES	PESORES	5	7.5	10	14	18	20
Mr (Mpa):	900	ESAL: 20,000	ESAL: 50,000	ESAL: 500,000	ESAL: 50.00000	ESAL: 25,000,000	ESAL: 50,000,000
T. Media	Fac (MPa)	Def. unit. Trac.					
Pav. (° C)		µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm	µmm/mm
13	5497	440	332	237	162	117	100
14	5213	451	341	245	167	121	104
15	4944	461	352	253	173	125	108
16	4689	472	362	261	178	130	111
17	4447	483	372	268	184	134	115
18	4218	493	383	277	191	139	119
19	4000	504	393	285	196	143	123
20	3793	514	404	294	202	148	127
21	3598	525	415	302	208	153	131
22	3412	536	427	311	215	158	136
23	3236	547	438	319	222	163	140
24	3069	557	449	329	228	168	145
25	2910	568	461	337	235	173	149
26	2760	578	414	347	242	179	154
27	2618	588	484	356	249	184	158
28	2483	598	496	365	256	189	163
29	2354	608	509	375	263	195	168
30	2233	618	521	384	271	200	173
31	2118	628	533	394	279	206	178
32	2008	637	544	404	286	212	183
33	1905	646	557	413	293	218	188
34	1806	655	569	423	302	223	193
35	1713	663	581	433	309	229	198
36	1625	672	593	443	317	235	204
37	1541	679	605	452	325	241	209
38	1461	687	616	462	333	247	214
39	1386	694	628	472	341	253	219

ANEXO E:DETERMINACION DE DAÑOS REGION COSTA

Mr 250 (Mpa)

REGIÓN COSTA							_					
ENERO	Mr (Mpa):	250	Hca (mm):	75	ESAL:	20000						
HORAS	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12
% Vehículos pesados	1.97	1.44	1.28	1.49	2.42	3.57	4.73	5.15	5.11	4.86	5.14	5.20
ni	33	24	21	25	40	60	79	86	85	81	86	87
T. Media Pav. (°C) real	33.3	32.1	31.6	30.8	30.4	30.0	29.4	29.6	30.1	31.1	32.2	34.3
T. Media Pav. (°C) ajust.	33	32	32	31	30	30	29	30	30	31	32	34
Mód. Rigidez (Mpa)	1905	2008	2008	2118	2233	2233	2354	2233	2233	2118	2008	1806
Def. unitarias (µmm/mm)	891	875	875	860	845	845	829	845	845	860	875	905
Ni	89,736	89,307	89,307	88,513	87,859	87,859	87,876	87,859	87,859	88,513	89,307	91,314
DAÑO	0.0004	0.0003	0.0002	0.0003	0.0005	0.0007	0.0009	0.0010	0.0010	0.0009	0.0010	0.0009

ENERO	Mir (Mipa):	250	Hca (mm):	75	ESAL:	20000						
HORAS	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
% Vehículos pesados	5.13	5.26	5.37	5.48	5.55	5.99	5.61	5.17	4.35	3.74	3.29	2.69
ni	85	88	89	91	93	100	94	86	73	62	55	45
T. Media Pav. (°C) real	39.8	41.7	42.6	43.3	42.6	41.2	38.5	37.7	37.2	35.4	34.9	34.3
T. Media Pav. (°C) ajust.	40	42	43	43	43	41	39	38	37	35	35	34
Mód. Rigidez (Mpa)	1314	1182	1121	1121	1121	1247	1386	1461	1541	1713	1713	1806
Def. unitarias (µmm/mm)	987	1001	1022	1022	1022	999	974	961	948	919	919	905
Ni	104,896	118,312	117,320	117,320	117,320	108,629	101,888	99,054	96,388	93,032	93,032	91,314
DAÑO	0.0008	0.0007	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0008	0.0007	0.0006	0.0005

Mr 500 (Mpa)

ENERO	Mr (Mpa):	500	Hca (mm):	75	ESAL:	20000						
HORAS	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12
% Vehículos pesados	1.97	1.44	1.28	1.49	2.42	3.57	4.73	5.15	5.11	4.86	5.14	5.20
ni	32.91	24.02	21.41	24.83	40.32	59.55	78.79	85.79	85.15	80.98	85.66	86.65
T. Media Pav. (°C) real	33.29	32.15	31.58	30.83	30.40	29.97	29.41	29.56	30.06	31.11	32.16	34.29
T. Media Pav. (°C) ajust.	33.00	32.00	32.00	31.00	30.00	30.00	29.00	30.00	30.00	31.00	32.00	34.00
Mód. Rigidez (Mpa)	1904.73	2008.39	2008.39	2117.69	2232.95	2232.95	2354.47	2232.95	2232.95	2117.69	2008.39	1806.41
Def. unitarias (µmm/mm)	800.00	787.00	787.00	774.00	759.00	759.00	746.00	759.00	759.00	774.00	787.00	814.00
Ni	153781.28	151723.32	151723.32	149897.30	150266.55	150266.55	148918.85	150266.55	150266.55	149897.30	151723.32	155116.78
DAÑO	0.0002	0.0002	0.0001	0.0002	0.0003	0.0004	0.0005	0.0006	0.0006	0.0005	0.0006	0.0006

ENERO	Mr (Mpa):	250	Hca (mm):	75	ESAL:	20000						
HORAS	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
% Vehículos pesados	5.13	5.26	5.37	5.48	5.55	5.99	5.61	5.17	4.35	3.74	3.29	2.69
ni	85.43	87.67	89.47	91.25	92.56	99.91	93.52	86.21	72.58	62.30	54.88	44.81
T. Media Pav. (°C) real	39.76	41.73	42.61	43.33	42.58	41.17	38.55	37.70	37.19	35.42	34.88	34.27
T. Media Pav. (°C) ajust.	40.00	42.00	43.00	43.00	43.00	41.00	39.00	38.00	37.00	35.00	35.00	34.00
Mód. Rigidez (Mpa)	1314.40	1182.21	1121.19	1121.19	1121.19	1246.55	1385.93	1461.36	1540.89	1713.18	1713.18	1806.41
Def. unitarias (µmm/mm)	887.00	909.00	919.00	919.00	919.00	898.00	876.00	864.00	852.00	827.00	827.00	814.00
Ni	178948.10	191593.41	199549.12	199549.12	199549.12	185093.39	173139.94	168624.89	164386.07	157645.16	157645.16	155116.78
DAÑO	0.0005	0.0005	0.0004	0.0005	0.0005	0.0005	0.0005	0.0005	0.0004	0.0004	0.0003	0.0003

Mr 750	(Mpa)
--------	-------

ENERO	Mr (Mpa):	750	Hca (mm):	75	ESAL:	20,000						
HORAS	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12
% Vehículos pesados	1.97	1.44	1.28	1.49	2.42	3.57	4.73	5.15	5.11	4.86	5.14	5.20
ni	33	24	21	25	40	60	79	86	85	81	86	87
T. Media Pav. (°C) real	33.3	32.1	31.6	30.8	30.4	30.0	29.4	29.6	30.1	31.1	32.2	34.3
T. Media Pav. (°C) ajust.	33	32	32	31	30	30	29	30	30	31	32	34
Mód. Rigidez (Mpa)	1905	2008	2008	2118	2233	2233	2354	2233	2233	2118	2008	1806
Def. unitarias (µmm/mm)	690	680	680	669	659	659	648	659	659	669	680	700
Ni	322,187	315,051	315,051	310,719	304,540	304,540	301,140	304,540	304,540	310,719	315,051	329,830
DAÑO	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003

ENERO	Mr (Mpa):	750	Hca (mm):	75	ESAL:	20,000						
HORAS	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
% Vehículos pesados	2.19	1.70	1.57	1.75	2.78	4.00	4.77	4.78	4.79	4.78	5.12	5.11
ni	36	28	26	29	46	67	79	80	80	80	85	85
T. Media Pav. (°C) real	31.7	29.7	30.0	29.2	28.9	28.6	28.7	29.1	29.9	31.2	32.2	34.4
T. Media Pav. (°C) ajust.	32	30	30	29	29	29	29	29	30	31	32	34
Mód. Rigidez (Mpa)	2008	2233	2233	2354	2354	2354	2354	2354	2233	2118	2008	1806
Def. unitarias (µmm/mm)	680	659	659	648	648	648	648	648	659	669	680	700
Ni	315,051	304,540	304,540	301,140	301,140	301,140	301,140	301,140	304,540	310,719	315,051	329,830
DAÑO	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003

Mr 900 (Mpa)

ENERO	Mr (Mpa):	900	Hca (mm):	75	ESAL:	20,000						
HORAS	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12
% Vehículos pesados	1.97	1.44	1.28	1.49	2.42	3.57	4.73	5.15	5.11	4.86	5.14	5.20
ni	33	24	21	25	40	60	79	86	85	81	86	87
T. Media Pav. (°C) real	33.3	32.1	31.6	30.8	30.4	30.0	29.4	29.6	30.1	31.1	32.2	34.3
T. Media Pav. (°C) ajust.	33	32	32	31	30	30	29	30	30	31	32	34
Mód. Rigidez (Mpa)	1905	2008	2008	2118	2233	2233	2354	2233	2233	2118	2008	1806
Def. unitarias (µmm/mm)	646	637	637	628	618	618	608	618	618	628	637	655
Ni	447,910	436,746	436,746	426,285	419,884	419,884	414,120	419,884	419,884	426,285	436,746	459,806
DAÑO	0.0001	0.0001	0.00005	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002

ENERO	Mr (Mpa):	900	Hca (mm):	75	ESAL:	20000						
HORAS	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
% Vehículos pesados	5.13	5.26	5.37	5.48	5.55	5.99	5.61	5.17	4.35	3.74	3.29	2.69
ni	85.43	87.67	89.47	91.25	92.56	99.91	93.52	86.21	72.58	62.30	54.88	44.81
T. Media Pav. (°C) real	39.76	41.73	42.61	43.33	42.58	41.17	38.55	37.70	37.19	35.42	34.88	34.27
T. Media Pav. (°C) ajust.	40.00	42.00	43.00	43.00	43.00	41.00	39.00	38.00	37.00	35.00	35.00	34.00
Mód. Rigidez (Mpa)	1,314.40	1,182.21	1,121.19	1,121.19	1,121.19	1,246.55	1,385.93	1,461.36	1,540.89	1,713.18	1,713.18	1,806.41
Def. unitarias (µmm/mm)	701	713	718	718	718	707	694	687	679	663	663	655
Ni	580,437	645,286	685,496	685,496	685,496	611,893	554,780	530,526	511,345	476,037	476,037	459,806
DAÑO	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001