

TÍTULO: "Consideraciones para el Empleo de Pruebas Reológicas en el Control de Calidad de Mezclas Asfálticas"

> AUTOR: Roberto Ronald Parrales Valarezo

> Trabajo de grado Previo a la obtención del título de: INGENIERO CIVIL

TUTOR: Ing. Rolando Vila Romaní, PhD.

> Guayaquil, Ecuador 2013

CERTIFICACIÓN

Certificamos que el presente trabajo fue realizado en su totalidad por **Roberto Ronald Parrales Valarezo**, como requerimiento parcial para la obtención del Título de **Ingeniero Civil**.

TUTOR

Ing. Rolando Vila Romaní, PhD.

REVISORES

Ing. Gustavo García Caputi

Mgs. Sonia Baño Pazmiño

DIRECTOR DE LA CARRERA

Ing. Mario Dueñas Rossi

Guayaquil, a los 26 días del mes de Julio del año 2013

DECLARACIÓN DE RESPONSABILIDAD

Yo, Roberto Ronald Parrales Valarezo

DECLARO QUE:

El Trabajo de Titulación "Consideraciones para el Empleo de Pruebas Reológicas en el Control de Calidad de Mezclas Asfálticas" previa a la obtención del Título de Ingeniero Civil, ha sido desarrollado en base a una investigación exhaustiva, respetando derechos intelectuales de terceros, conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico del Trabajo de Titulación referido.

Guayaquil, a los 26 días del mes de Julio del año 2013

EL AUTOR:

AUTORIZACIÓN

Yo, Roberto Ronald Parrales Valarezo

Autorizo a la Universidad Católica de Santiago de Guayaquil, la **publicación** en la biblioteca de la institución del Trabajo de Titulación: "**Consideraciones para el Empleo de Pruebas Reológicas en el Control de Calidad de Mezclas Asfálticas**", cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.

Guayaquil, a los 26 días del mes de Julio del año 2013

EL AUTOR:

AGRADECIMIENTO

Agradezco a Dios, A mis padres; Arq. Roberto Parrales Torres, y Sra. Jenny Valarezo León.

A personas muy especiales en mi vida que sin su apoyo, no hubiera sido posible dar este paso; C.P.A. Darwin Bazán, Lcda. Doris Valarezo, Sra. Martha Gonzales, Lcda. Arminda Yagual, quienes con su aporte de entusiasmo y fe, me dieron la fuerza para seguir.

Y de manera especial al Ing. Rolando Vila Romaní, por su apoyo, paciencia y confianza, depositadas en mí, durante todo este proceso.

DEDICATORIA

Te lo dedico, Abuela, Madre, Amiga, Siempre estás conmigo, Ana Natividad Torres Alay.

Y

A mis hermanos Daniel, Michael, Edwin y Anita, quienes son mi más grande orgullo.

TRIBUNAL DE SUSTENTACIÓN

Ing. Rolando Vila Romaní, PhD. PROFESOR GUÍA Ó TUTOR

Ing. Gustavo García Caputi PROFESOR DELEGADO

CALIFICACIÓN

Ing. Rolando Vila Romaní, PhD. PROFESOR GUÍA Ó TUTOR

ÍNDICE GENERAL

INTRODUCCIÓN1
OBJETIVO
CAPÍTULO 1 – PARTICULARIDADES DE LAS MEZCLAS ASFÁLTICAS ESTUDIADAS4
Introducción4
Plantas seleccionadas4
Composición de las mezclas a ensayar5
Agregados minerales5
Asfaltos6
Elaboración y obtención de briquetas asfálticas7
Método Marshall para fabricación de briquetas asfálticas7
Equipo empleado en la elaboración de briquetas8
Descripción del procedimiento, de fabricación de briquetas.
Organización de las mezclas a ensayar17
Descripción del etiquetado de las muestras a ensayar18
Características geométricas y registro de las muestras.
Registro de características geométricas de briquetas pertenecientes a la planta Duran
Registro de características geométricas de briquetas pertenecientes a la planta Chivería21
Registro de características geométricas de briquetas pertenecientes a la planta KM2622
Registro de características geométricas de briquetas pertenecientes a la planta Vía a la Costa23
CAPÍTULO 2 – CONTROL DE CALIDAD DE LAS MEZCLAS ASFÁLTICAS24

Generalidades	24
Control de calidad convencional de las mezclas asfálticas	24
Porcentaje de Asfalto	24
Granulometría en agregados extraídos	25
Densidad teórica máxima (Ensayo Rice)	25
Gravedad específica "Bulk" o densidad	25
Porcentaje de Vacíos	28
Control de calidad con pruebas reológicas o de desempeño	28
Módulo de rigidez mediante deformación controlada	29
Módulo de rigidez mediante carga controlada.	
Ensayo de Fatiga	41
Deformación permanente (Creep dinámico)	47
CAPÍTULO 3 – DESARROLLO EXPERIMENTAL Y RESULTADOS OBTENIDOS	55
Porcentaje de asfalto en muestras asfálticas	55
Prueba de extracción de asfalto de la planta Durán	55
Prueba de extracción de asfalto de la planta Chivería	56
Prueba de extracción de asfalto de la planta KM26.	57
Prueba de extracción de asfalto de la planta Vía a la Costa	58
Granulometría en agregados extraídos	59
Granulometría en agregados extraídos de la planta Duran.	59
Granulometría en agregados extraídos de la planta Chivería	60
Granulometría en agregados extraídos de la planta KM26	61
Granulometría en agregados extraídos de la planta Vía a la Costa	62
Densidad teórica máxima. Ensayo RICE.	63
Ensayo RICE planta Durán	63

Ensayo RICE planta Chivería63
Ensayo RICE planta KM2664
Ensayo RICE planta Vía a la Costa64
Gravedad específica "Bulk" y Porcentaje de vacíos64
Gravedad específica bulk y porcentaje de vacíos en la planta Duran65
Gravedad específica bulk y porcentaje de vacíos en la planta Chivería68
Gravedad específica bulk y porcentaje de vacíos en la planta KM2671
Gravedad específica bulk y porcentaje de vacíos en la planta Vía a la Costa74
Organización de las muestras a ensayar mediante pruebas reológicas76
Módulo de Rigidez mediante deformación controlada77
Módulo de rigidez promedio, mediante deformación controlada, con una energía de compactación de 35 golpes78
Módulo de rigidez promedio, mediante deformación controlada, con una energía de compactación de 50 golpes79
Módulo de rigidez promedio, mediante deformación controlada, con una energía de compactación de 75 golpes80
Ensayo de Módulo de Rigidez, mediante carga controlada y Fatiga81
Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta Durán81
Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta Chivería
Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta KM2685
Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta Vía a la Costa
Ensayo de deformación permanente. (Creep Dinámico)89
CAPÍTULO 4 – ANÁLISIS DE LOS RESULTADOS91
Porcentaje de asfalto en las muestras91

Granulometría en agregados extraídos	91
Densidad teórica máxima. Ensayo RICE	92
Gravedad específica "Bulk" o Densidad	92
Porcentaje de Vacíos	93
Módulo de rigidez mediante deformación controlada	94
Fatiga	95
Deformación permanente (Creep Dinámico)	97
CONCLUSIONES Y RECOMENDACIONES	99
CONCLUSIONES	99
RECOMENDACIONES.	101
BIBLIOGRAFÍA	103

ÍNDICE DE TABLAS

Tabla 1: Dosificación de las mezclas asfálticas. 6
Tabla 2: Briquetas entregadas y fabricadas
Tabla 3: Etiquetado de las mezclas a ensayar17
Tabla 4: características geométricas de briquetas de la planta Duran20
Tabla 5: Características geométricas de briquetas de la planta Chivería21
Tabla 6: Características geométricas de briquetas de la planta KM2622
Tabla 7: Características geométricas de briquetas de la planta Vía a la Costa. 23
Tabla 8: Especificación granulométrica para tamaño máximo nominal de½"(12.5mm).25
Tabla 9: Prueba de extracción de asfalto de la planta Durán55
Tabla 10: Prueba de extracción de asfalto de la planta Chivería56
Tabla 11: Prueba de extracción de asfalto de la planta KM2657
Tabla 12: Prueba de extracción de asfalto de la planta Vía a la Costa58
Tabla 13: Granulometría en agregados extraídos de planta Durán59
Tabla 14: Granulometría en agregados extraídos de planta Chivería60
Tabla 15: Granulometría en agregados extraídos de planta KM2661
Tabla 16: Granulometría en agregados extraídos de planta Vía a la Costa62
Tabla 17: Resultados del ensayo RICE, de la planta Durán63
Tabla 18: Resultados del ensayo RICE, de la planta Chivería63
Tabla 19: Resultados del ensayo RICE, de la planta KM2664
Tabla 20: Resultados del ensayo RICE, de la planta Vía a la costa64
Tabla 21: Gravedad específica bulk y porcentaje de vacíos de la planta Durán. .65

Tabla 22: Gravedad específica bulk y porcentaje de vacíos de la planta Chivería6	8
Tabla 23: Gravedad específica bulk y porcentaje de vacíos de la planta KM26.	'1
Tabla 24: Gravedad específica "bulk" y porcentaje de vacíos de la planta Vía a la costa	'4
Tabla 25: Organización de las muestras, para pruebas reológicas7	6
Tabla 26: Módulos de rigidez, mediante deformación controlada, todas las plantas7	7
Tabla 27: Módulo de rigidez, mediante deformación controlada, Compactación 35 golpes7	'8
Tabla 28: Modulo de rigidez, mediante deformación controlada, Compactación50 golpes.7	'9
Tabla 29: Modulo de rigidez, mediante deformación controlada, Compactación75 golpes.8	0
Tabla 30: Módulo por carga controlada y fatiga, planta Durán8	51
Tabla 31: Módulo por carga controlada y fatiga, planta Chivería8	3
Tabla 32: Módulo por carga controlada y fatiga, planta KM268	5
Tabla 33: Módulo por carga controlada y fatiga, planta Vía a la costa8	7
Tabla 34: Resultados del ensayo Creep Dinámico8	9
Tabla 35: Porcentaje de asfalto9	1
Tabla 36: Densidad teórica máxima, ensayo RICE9	2
Tabla 37: Resultados de los ensayos de gravedad específica "Bulk"9	3
Tabla 38: Porcentaje de vacíos, resultados generales9	3
Tabla 39: Módulo de rigidez promedios, resultados generales9	4
Tabla 40: Porcentaje de deformación axial y porcentaje de vacíos9	18

ÍNDICE DE GRÁFICOS

Fig. 1 : Horno	8
Fig. 2: Termómetro blindado	9
Fig. 3: Balanzas	9
Fig. 4: Martillo de compactación10	0
Fig. 5: Compactador10	0
Fig. 6: Soporte de molde12	1
Fig. 7: Moldes de compactación12	1
Fig. 8: Extractor de muestra12	2
Fig. 9: Espátulas y bandejas12	2
Fig. 10: Extracción de muestras desde planta13	3
Fig. 11: Extracción de muestra en planta Duran13	3
Fig. 12: Molde siendo engrasado14	4
Fig. 13: Compactadores manual y automático15	5
Fig. 14: Enfriamiento de briquetas15	5
Fig. 15: Extractor de muestras o briquetas16	6
Fig. 16: Etiquetado de briquetas17	7
Fig. 17: Briqueta 1-DU-5018	8
Fig. 18: Calibrador vernier o pie de rey19	9
Fig. 19: Peso de las muestras26	6
Fig. 20: Peso sumergido26	6
Fig. 21: Peso con superficie superficialmente seca27	7
Fig. 22: Paso1. Selección de la aplicación Stiffness micron	0
Fig. 23: Paso 2. Pantalla de inicio y advertencias	0

Fig. 24: Paso 3. Dar la orden de No imprimir los resultados
Fig. 25: Paso 4. Permitir guardar los datos
Fig. 26: Paso 5. Guardar el archivo previo al trabajo
Fig. 27: Paso 6. Continuar el ensayo32
Fig. 28: Paso 7. Guardar el nombre del operador
Fig. 29: Paso 7. Una vez ingresado el operador, presionar el botón continuar33
Fig. 30: Paso 8. Guardar el nombre de la muestra o archivo a trabajar
Fig. 31: Paso 9. Ingreso de parámetros al sistema
Fig. 32: Paso 10. Poner la muestra bajo el transductor de cargas
Fig. 33: Paso 11. Indicamos al programa, hacer contacto con la muestra35
Fig. 34: Paso 12. Posicionamiento de los sensores
Fig. 35: Paso 13. Liberar la muestra de sus anclajes
Fig. 36: Inicio del Ensayo en su primer instancia
Fig. 37: Fin del primer proceso
Fig. 38: Re-calibración de los sensores
Fig. 39: Verificación de las temperaturas, e inicio del ensayo
Fig. 40: Fin del ensayo, registro de los resultados
Fig. 41: Selección de la aplicación Stiffness stress40
Fig. 42: Ingreso de carga para el ensayo41
Fig. 43: Selección de la aplicación Fatigue42
Fig. 44: Paso 1. Inicio del programa, solicitud de alejar la muestra43
Fig. 45: Paso 2. Continuar con la aplicación43
Fig. 46: Paso 3. Grabar el nombre del operador44
Fig. 47: Paso 4. Grabar el archivo y muestra44
Fig. 48: Paso 5. Ingreso de parámetros45

Fig. 49: Mensajes del sistema, seguir lo aconsejado y continuar	45
Fig. 50: Contacto del actuador de fuerzas y la muestra	46
Fig. 51: Inicio del ensayo	46
Fig. 52: Fin del ensayo	47
Fig. 53: Selección de la aplicación Dynamic creep.	48
Fig. 54: Paso 1. Seleccionar RLA Test, para guardar los datos del ensayo	48
Fig. 55: Mensaje inicio del procedimiento.	49
Fig. 56: Paso 2. Guardar el archivo del ensayo	49
Fig. 57: Paso 3. Guardar el nombre del operador	50
Fig. 58: Paso 4. Guardar archivo del ensayo	50
Fig. 59: Paso 5. Ingreso de parámetros	51
Fig. 60: Mensajes del sistema	51
Fig. 61: Paso 6. Ajuste de los sensores	52
Fig. 62: Correcto ajuste de los sensores a la muestra.	52
Fig. 63: Hacer contacto con la muestra	53
Fig. 64: Inicio del ensayo	53
Fig. 65: Ensayo en proceso.	54
Fig. 66: Fin del ensayo	54
Fig. 67: Gravedad específica o densidades, planta Durán	65
Fig. 68: Gravedad específica promedio, planta Durán	66
Fig. 69: Porcentaje de vacíos, planta Durán	66
Fig. 70: Porcentaje de vacíos promedio, planta Durán	67
Fig. 71: Gravedad específica o densidades, Planta Chivería	68
Fig. 72: Gravedad específica promedio, planta Chivería	69
Fig. 73: Porcentaje de vacíos, planta Chivería	69

Fig. 74: Porcentaje de vacíos promedio, planta Chivería7	70
Fig. 75: Gravedad específica o densidades, planta KM267	71
Fig. 76: Gravedad específica promedio, planta KM267	72
Fig. 77: Porcentaje de vacíos, planta KM267	72
Fig. 78: Porcentaje de vacíos promedio, planta KM267	73
Fig. 79: Gravedad específica o densidades, planta Vía a la Costa7	74
Fig. 80: Gravedad específica promedio, planta Vía a la Costa7	75
Fig. 81: Porcentaje de vacíos, planta Vía a la Costa7	75
Fig. 82; Porcentaje de vacíos promedio, planta Vía a la Costa7	76
Fig. 83: Módulo de rigidez promedio, mediante deformación controlada, compactación 35 golpes7	78
Fig. 84: Módulo de rigidez promedio, mediante deformación controlada, compactación 50 golpes7	79
Fig. 85: Módulo de rigidez promedio, mediante deformación controlada, compactación 75 golpes8	30
Fig. 86: Relación Carga vs repeticiones, Planta Durán8	31
Fig. 87: Relación Deformación vs repeticiones, planta Duran8	32
Fig. 88: Relación Carga vs repeticiones, Planta Chivería8	33
Fig. 89: Relación Deformación vs repeticiones, planta Chivería8	34
Fig. 90: Relación Carga vs repeticiones, Planta KM268	35
Fig. 91: Relación Deformación vs repeticiones, planta KM268	36
Fig. 92: Relación Carga vs repeticiones, Plata Vía a la costa8	37
Fig. 93: Relación Deformación vs repeticiones, planta Vía a la Costa8	38
Fig. 94: Relación Porcentaje de deformación axial y energía de compactación.	90
Fig. 95: Relación del Módulo de rigidez y el porcentaje de vacíos9	94
Fig. 96: Relación típica entre carga y repeticiones9	96

Fig. 9	7: Relación típica entre deformación y repeticiones	6
Fig. 9	3: Gráfico de porcentajes de deformación axial y vacíos9	8

RESUMEN

El trabajo presenta un estudio de las características reológicas en cuatro tipos de mezclas asfálticas, producidas en diferentes plantas con los agregados más representativos de la región costa, las cuales emplean diferentes energías de compactación (35, 50 y 75 golpes por cara), el objetivo del mismo es determinar a través de pruebas los parámetros reológicos correspondientes a: módulos de rigidez, compresión cíclica uniaxial sin confinamiento y fatiga bajo dispositivos de tracción indirecta, para generar recomendaciones que permitan mejorar los controles de calidad que se realizan actualmente.

En este estudio se realizaron los ensayos utilizados de manera habitual para el control de calidad en mezclas asfálticas convencionales, tales como: determinación del porcentaje de asfalto, granulometría en agregados extraídos, densidad teórica máxima, gravedad específica y porcentaje de vacíos; aplicando las normas ASTM y AASHTO que son requeridas para cada procedimiento. Los resultados obtenidos estuvieron dentro de las exigencias que establece el estándar de calidad del Ministerio de Transporte y Obras Públicas.

Los ensayos realizados para el control de calidad en mezclas asfálticas mediante pruebas reológicas o de desempeño fueron: módulo de rigidez, fatiga y deformación permanente o de creep dinámico; para lo cual se utilizó el equipo Nottingham Asphalt Tester, del laboratorio de carreteras de la Universidad Católica de Santiago de Guayaquil. Los resultados obtenidos estuvieron dentro de los parámetros establecidos por las normas internacionales y fueron relacionados con los resultados en control de calidad convencionales. Llegando a conclusiones de considerable valor práctico, así como de algunas importantes consideraciones y recomendaciones para las futuras evaluaciones de este tipo ensayos.

Palabras Claves: Reología, Módulo, Rigidez, Fatiga, Deformación, Creep.

INTRODUCCIÓN

La mezcla asfáltica en caliente para pavimentos de carreteras está compuesta por una combinación de agregados minerales y un cemento asfáltico, ambos con calidades muy particulares, cuyas proporciones en la mezcla más la efectividad del proceso de compactación implicarán propiedades que pudiesen ser muy variables. Dentro de estas propiedades vale mencionar la resistencia al ahuellamiento (deformaciones plásticas) y a la fatiga (fisuras), consideradas en la mayor parte de los métodos de diseño de pavimentos.

En los últimos años ha tomado auge en el mundo el estudio y control de estas propiedades mediantes las llamadas pruebas reológicas, basadas en un análisis dinámico del comportamiento tensión-deformación en especímenes de mezclas asfálticas. La forma del estudio tensión-deformación es variable, pudiéndose emplear pruebas a compresión, flexión, tracción y de corte.

En la UCSG existe un equipo Nottingham Asphalt Tester (NAT) modelo NU-10, que permite realizar varias de este tipo de pruebas reológicas. El NAT aplica las cargas mediante un sistema neumático con servo-control, midiéndose la fuerza aplicada por el transductor de la celda de carga. El equipo utiliza una computadora junto con un sistema digital de adquisición de datos y control de sistema que permite desarrollar las distintas pruebas y procesar la información a través de programas específicos. Con el mismo se pueden realizar diferentes tipos de pruebas: módulos de rigidez bajo deformación o carga controlada, compresión cíclica uniaxial sin confinamiento (creep dinámico) y pruebas de fatiga bajo dispositivo de tracción indirecta.

Para la realización de estas pruebas en general se consideran las metodologías dadas por el fabricante del equipo, que coinciden con los del Comité Europeo de Normalización (CEN 2000) respecto a la configuración de cargas y al sistema de medición y control; aunque para el caso de la prueba de compresión

cíclica uniaxial la CEN establece cierto confinamiento de la muestra, ya que el plato de carga tiene un diámetro menor que el de la muestra cilíndrica a ensayar.

No obstante a las ventajas de este tipo de equipo, hasta la presente fecha el control de calidad rutinario a las mezclas fabricadas en planta se basa, además del chequeo de componentes, en la comprobación de ciertos parámetros previstos en el diseño Marshall sobre briquetas compactadas con el 100% de la energía de compactación (usualmente 75 golpes/cara). Los parámetros volumétricos son densidades, porcentaje de vacíos con aire, de vacíos en el agregado mineral y de vacíos rellenos de asfalto, y los parámetros resistentes, especialmente relacionados con la deformación plástica, son la estabilidad Marshall y el flujo. Estos dos últimos parámetros son empíricos y de difícil interpretación desde un punto de vista tenso-deformacional. Vale aclarar que para el equipo NAT pueden emplearse briquetas tipo Marshall o núcleos convencionales de 10 cm de diámetro, algo beneficioso para este trabajo.

Pese a cumplirse usualmente con este tipo de control rutinario, es muy frecuente ver en el país pavimentos fisurados o deformados a los pocos años de su construcción o rehabilitación, lo que demuestra la insuficiencia de este sistema de control. Es decir, que existe la necesidad de considerar seriamente la aplicación a gran escala de las pruebas reológicas en el Ecuador, para lo cual tiene sustancial importancia el estudio teórico-práctico de los parámetros relacionados con estas, así como de las posibles exigencias a cumplirse en dichas pruebas, al menos de las que particularmente están a nuestro alcance con el empleo del NAT.

2

OBJETIVO

Determinar, a través de pruebas, los parámetros reológicos correspondientes a: módulos de rigidez, compresión cíclica uniaxial sin confinamiento y fatiga bajo dispositivos de tracción indirecta, para generar recomendaciones que permitan mejorar los controles de calidad que se realizan actualmente.

CAPÍTULO 1 – PARTICULARIDADES DE LAS MEZCLAS ASFÁLTICAS ESTUDIADAS

Introducción

El estudio se realizará sobre cuatro tipos de mezclas asfálticas densas fabricadas en diferentes plantas de la región costa del Ecuador, empleando distintos agregados minerales. Para cada una de ellas se variará la energía de compactación a nivel de laboratorio, aplicando diferentes números de golpes por capa (75, 50 y 35 golpes). Se ha utilizado el mismo tipo de cemento asfáltico AC-20 procedente de la Refinería de Esmeraldas. Con estas muestras obtenidas se procederá a realizar pruebas reológicas para denotar las consideraciones, tomar sus resultados y poder establecer conclusiones.

Plantas seleccionadas.

Con el gentil aporte de varias empresas constructoras se pudo realizar la toma de muestras para la fabricación de las briquetas necesarias para este trabajo de grado. Denominándose las plantas de la siguiente manera, para su sencillo uso en gráficas y cálculos posteriores, de las cuales se mostrará posteriormente su consiguiente caracterización.

- 1. DURÁN
- 2. CHIVERÍA
- 3. KM26
- 4. VÍA A LA COSTA

Composición de las mezclas a ensayar.

El diseño de las mezclas de cada planta se realizó en su momento de acuerdo al método Marshall. En la confección de las briquetas se ha variado únicamente, como se indica en la introducción, la energía de compactación, siendo estas 35, 50 y 75 golpes, obteniéndose 5 muestras por cada tipo de energía de compactación.

A continuación se estudia la composición de las mezclas, donde la dosificación empleada ha sido informada por el personal de las plantas, para verificar lo acertado o no de estas dosificaciones se realizaron análisis experimentales que se mostraran posteriormente.

Agregados minerales.

Los agregados minerales en este trabajo están constituidos por rocas trituradas de las diferentes canteras de la ciudad de Guayaquil y arena de río. Todos los materiales han sido aprobados debidamente por el Ministerio de Transporte y Obras públicas del Ecuador. La dosificación en peso y granulometría responde a los criterios del organismo ya mencionado, del cual detallaremos sus especificaciones en el capítulo siguiente.

Asfaltos.

Se utilizará, en todas las muestras a ensayarse, el asfalto proveniente de la refinería del Ecuador clasificado como AC-20. La tabla 1, muestra la dosificación de las mezclas a utilizarse en este estudio.

Dosificación de las mezclas				
Planta	Tipo de Material	Procedencia	Tipo de Roca	Dosificación
	Piedra 1/2 "	Cantera Durán	Andesita	15%
Durán	Piedra 3/8"	Cantera Durán	Andesita	65%
Duran	Arena	Río Chimbo	Arena de río	20%
	Asfalto	Refinería Esmeralda	-	7.0%
	Piedra 3/4"	Cantera Chivería	Basalto	20%
Chivoría	Piedra 3/8"	Cantera Chivería	Basalto	60%
Chivena	Arena fina	Mina Limonal	Arena de río	20%
	Asfalto	Refinería Esmeralda	-	6.0%
	Piedra 1/2 "	Cantera Km 26	Aluvial	25%
KM26	Piedras 3/8"	Cantera Km 26	Aluvial	55%
KIWIZO	Arena	Río Bulu Bulu	Arena de río	20%
	Asfalto	Refinería Esmeralda	-	5.5%
	Piedra 1/2 "	Cantera Huaico	Caliza	40%
Vía a la Costa	Piedra 3/8"	Cantera Huaico	Caliza	40%
	Arena	Río Chimbo	Arena natural	20%
	Asfalto	Refinería Esmeralda	-	6.2%

Tabla 1: Dosificación de las mezclas asfálticas.

Elaboración y obtención de briquetas asfálticas.

Esta se desarrolló de dos maneras:

- 1. Las plantas entregan las briquetas ya elaboradas
- 2. Se toma la muestra en la planta y se elaboran las briquetas.

Las cuales detallamos a continuación, en la tabla 2:

Briquetas entregadas	Briquetas fabricadas
Chivería	Durán
KM26	Vía a la costa

Tabla 2: Briquetas entregadas y fabricadas.

Método Marshall para fabricación de briquetas asfálticas.

El método Marshall usa muestras cilíndricas de prueba, normalizadas, llamadas briquetas de 2 ½" de espesor con 4"de diámetro (64 x 102mm). Estos valores son los idealmente recomendados, ya en la práctica se dan variaciones que se ajustan empleando coeficientes de corrección o directamente en las fórmulas de cálculo.

Equipo empleado en la elaboración de briquetas.

Entre los equipos y herramientas más importantes para la elaboración de las briquetas se pueden mencionar los siguientes:

Horno.- Para calentar los materiales o mantener la temperatura óptima de la mezcla (aproximadamente 150 °C).

Fig. 1 : Horno.

Termómetro blindado.- De vidrio o dial con varilla, para lecturas entre 10 °C y 230 °C.

Fig. 2: Termómetro blindado.

Balanzas.- Si la capacidad es de 2 Kg, con aproximación a 0.1 gramo y si es de 5 Kg con una aproximación a 1 gramo.

Fig. 3: Balanzas.

Compactador.- ya sea éste manual o electromecánico. Consta de un pedestal (soporte de madera sobre el cual descansa una placa de acero) más el <u>martillo</u> <u>de compactación</u>.

Martillo de compactación.- Conformado por un cilindro o mazo de acero 10 libras (4.5Kg) con una perforación central que permite su deslizamiento por una guía (varilla de acero). El mazo golpea una pieza circular que se coloca sobre el molde. La cara circular es de 3 7/8" (98.4mm) y la altura de caída es de 18" (cm) de altura.

Fig. 5: Compactador.

Fig. 4: Martillo de compactación.

Soporte del molde.- que consta de un dispositivo de tensión elástica, diseñado para acoplar el molde sobre el pedestal de compactación.

Fig. 6: Soporte de molde.

Molde de Compactación.- que consta de una base, molde encofrado y collar de extensión. EL molde tiene un diámetro inferior de 4"(101.6mm) y una altura aproximada de 3"(76mm). La base y el collar están diseñados para intercambiarse ya sea a uno u otro lado del molde.

Fig. 7: Moldes de compactación.

Extractor de muestra.- o Prensa, sirve para extraer la muestra (briqueta) ya compactada. Para evitar darle golpes adicionales o maltratarla. Evitando así se altere la energía de compactación requerida.

Fig. 8: Extractor de muestra.

Herramientas menores.- como cucharas, espátulas, bandejas metálicas, mezclador.

Fig. 9: Espátulas y bandejas.

Descripción del procedimiento, de fabricación de briquetas.

Extracción de muestra desde planta.

Al ubicar la planta, se extrae la muestra directamente de la planta, controlando su temperatura.

Fig. 10: Extracción de muestras desde planta.

Fig. 11: Extracción de muestra en planta Duran.

Moldeo.

Se engrasa el molde de briqueta tipo Marshall, para evitar que la muestra se pegue y se rellena el mismo en capas hasta obtener la altura de compactación deseada. Colocar toda la mezcla preparada dentro del molde, emparejando la mezcla con la espátula, unas 15 veces alrededor del perímetro y 10 veces en la parte central.

Fig. 12: Molde siendo engrasado.

Compactación de los núcleos de prueba.

Inmediatamente, antes del proceso de compactación, la temperatura de la mezcla debe estar muy cercana a los límites de la temperatura de compactación establecida. Colocar nuevamente el collar de extensión, y ubicarlo en el pedestal de compactación. Se aplican 75 (35 ó 50) golpes con el martillo, según lo especificado para nuestro estudio. Se quitan la base y el collar se le da vuelta y se vuelva a armar el conjunto. Se aplica el mismo número de golpes a la cara opuesta de la muestra.

Después de la compactación, se quita la base del molde y se expone la muestra a la temperatura ambiente dentro del molde. Se saca la muestra del molde por medio de un extractor

Fig. 13: Compactadores manual y automático.

Enfriamiento.

Sin extraer del molde, colocamos en agua para enfriar la briqueta, manteniendo así sus dimensiones, e impidiendo su deformación.

Fig. 14: Enfriamiento de briquetas.

Extracción del molde.

Usando el extractor en laboratorio se realiza la extracción de la misma, realizarlo con golpes adicionales o por otros medios, cambiara la energía de compactación de la muestra.

Fig. 15: Extractor de muestras o briquetas.
Etiquetado.

Una vez extraída la muestra, se realiza la identificación y etiquetado de las mismas para su posterior análisis, esto evita la confusión y la mala interpretación de resultados por confusión.

Fig. 16: Etiquetado de briquetas.

Organización de las mezclas a ensayar.

Se muestra a continuación, las etiquetas y la organización, de las muestras o briquetas a utilizarse en el siguiente trabajo de investigación, las cuales serán aplicadas en la etapa de desarrollo experimental para la identificación de las mismas.

DU	1-DU-35	2-DU-35	3-DU-35	4-DU-35	5-DU-35	1-DU-35
	1-DU-50	2-DU-50	3-DU-50	4-DU-50	5-DU-50	1-DU-50
	1-DU-75	2-DU-75	3-DU-75	4-DU-75	5-DU-75	1-DU-75
	1-CH-35	2-CH-35	3-CH-35	4-CH-35	5-CH-35	1-CH-35
СН	1-CH-50	2-CH-50	3-CH-50	4-CH-50	5-CH-50	1-CH-50
	1-CH-75	2-CH-75	3-CH-75	4-CH-75	5-CH-75	1-CH-75
K26	1-K26-35	2-K26-35	3-K26-35	4-K26-35	5-K26-35	1-K26-35
	1-K26-50	2-K26-50	3-K26-50	4-K26-50	5-K26-50	1-K26-50
	1-K26-75	2-K26-75	3-K26-75	4-K26-75	5-K26-75	1-K26-75
	1-AV-35	2-AV-35	3-AV-35	4-AV-35	5-AV-35	1-AV-35
AV	1-AV-50	2-AV-50	3-AV-50	4-AV-50	5-AV-50	1-AV-50
	1-AV-75	2-AV-75	3-AV-75	4-AV-75	5-AV-75	1-AV-75

Tabla 3: Etiquetado de las mezclas a ensayar.

Descripción del etiquetado de las muestras a ensayar.

Utilizamos un color diferente para la identificación grafica de cada planta, también se describe, el significado de cada agrupación de caracteres en la misma.

Vemos en la Fig. 17, la Muestra No. 1, con una energía de compactación de 50 Golpes, proveniente de la planta Duran.

1	DU	50
Numeración	Planta	Energía de Compactación

Fig. 17: Briqueta 1-DU-50.

Características geométricas y registro de las muestras.

Cuando la muestra se encuentra fría y haya trascurrido las 16 horas mínimo, se realiza, la medición de sus dimensiones y registro. Lo cual consiste en la medición del espesor por 3 veces en diferentes posiciones con un calibrador vernier (pie de rey). Ver Figura 18. Y se obtiene el promedio de las mediciones realizadas.

Esto se realiza, por motivo de las irregularidades que las briquetas puedan presentar, la cual debe evitarse en lo posible con un correcto procedimiento de fabricación, especialmente en el proceso de compactación.

Fig. 18: Calibrador vernier o pie de rey.

Registro de características geométricas de briquetas pertenecientes a la planta Duran.

Luego de medir con el calibrador, registramos los datos a continuación en la Tabla. 4.

Planta	No. Muestra	Energía de Compactación (Golpes)	Muestra	Espesor e (mm)
			1 05 DU	
Duran	1	35	1-35-DU	67
Durán	2	35	2-35-DU	64
Durán	3	35	3-35-DU	65
Durán	4	35	4-35-DU	67
Durán	5	35	5-35-DU	68
Durán	1	50	1-50-DU	63
Durán	2	50	2-50-DU	66
Durán	3	50	3-50-DU	61
Durán	4	50	4-50-DU	65
Durán	5	50	5-50-DU	65
Durán	1	75	1-75-DU	63
Durán	2	75	2-75-DU	61
Durán	3	75	3-75-DU	61
Durán	4	75	4-75-DU	63
Durán	5	75	5-75-DU	65

Tabla 4: características geométricas de briquetas de la planta Duran

Registro de características geométricas de briquetas pertenecientes a la planta Chivería.

Luego de medir con el calibrador, registramos los datos a continuación en la Tabla. 5.

Planta	No. Muestra	Energía de Compactación (Golpes)	Muestra	Espesor e (mm)
Τ,	•	*	•	•
Chivería	1	35	1-35-CH	64
Chivería	2	35	2-35-CH	61
Chivería	3	35	3-35-CH	62
Chivería	4	35	4-35-CH	63
Chivería	5	35	5-35-CH	65
Chivería	1	50	1-50-CH	63
Chivería	2	50	2-50-CH	64
Chivería	3	50	3-50-CH	63
Chivería	4	50	4-50-CH	65
Chivería	5	50	5-50-CH	66
Chivería	1	75	1-75-CH	65
Chivería	2	75	2-75-CH	62
Chivería	3	75	3-75-CH	65
Chivería	4	75	4-75-CH	63
Chivería	5	75	5-75-CH	63

Tabla 5: Características geométricas de briquetas de la planta Chivería.

Registro de características geométricas de briquetas pertenecientes a la planta KM26.

Luego de medir con el calibrador, registramos los datos a continuación en la Tabla. 6.

Planta	No. Muestra	Energía de Compactación (Golpes)	Muestra	Espesor e (mm)
41	· · · · · · · · · · · · · · · · · · ·	<u>·</u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
KM26	1	35	1-35-K26	63
KM26	2	35	2-35-K26	66
KM26	3	35	3-35-K26	64
TRIVI20	5		3-33-1(20	04
KM26	4	35	4-35-K26	65
	_			
KM26	5	35	5-35-K26	64
KM26	1	50	1-50-K26	62
KM26	2	50	2-50-K26	62
KM26	3	50	3-50-K26	64
	0	00	0 00 1120	
KM26	4	50	4-50-K26	63
1/1/00	-	50	5 50 K00	<u></u>
KIVI20	5	50	5-50-K20	60
KM26	1	75	1-75-K26	63
KM26	2	75	2-75-K26	60
KM26	3	75	3-75-K26	61
······································	0		0.0.120	
KM26	4	75	4-75-K26	63
KM26	5	75	5-75-K26	64

Tabla 6: Características geométricas de briquetas de la planta KM26.

Registro de características geométricas de briquetas pertenecientes a la planta Vía a la Costa.

Luego de medir con el calibrador, registramos los datos a continuación en la Tabla. 7.

Planta	No. Muestra	Energía de Compactación (Golpes)	Muestra	Espesor e (mm)
41	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Vía a la Costa	1	35	1-35-AV	66
Vía a la Costa	2	35	2-35-AV	67
	2	25	2.25 AV	62
Via a la Cusia	3		3-33-AV	03
Vía a la Costa	4	35	4-35-AV	61
Vía a la Costa	5	35	5-35-AV	68
Vía a la Costa	1	50	1-50-AV	56
Vía a la Costa	2	50	2-50-AV	65
		50	0 50 414	
Via a la Costa	3	50	3-50-AV	63
Vía a la Costa	4	50	4-50-AV	66
Vía a la Costa	5	50	5-50-AV	58
Vía a la Costa	1	75	1-75-41/	56
	1	15	1-13-74	
Vía a la Costa	2	75	2-75-AV	59
Via a la Costa	3	75	3-75-AV	61
Vía a la Costa	4	75	4-75-AV	56
Vía a la Costa	5	75	5-75-AV	54

Tabla 7: Características geométricas de briquetas de la planta Vía a la Costa.

CAPÍTULO 2 – CONTROL DE CALIDAD DE LAS MEZCLAS ASFÁLTICAS.

Generalidades.

Se realizarán diferentes procedimientos experimentales y ensayos, siguiendo las normas ASTM y AASTHO necesarias e indicadas para cada procedimiento, según corresponda, sus particularidades y especificaciones. Se hará una breve explicación del ensayo a utilizarse y la norma aplicada a cada uno de ellos, las cuales se han seguido a cabalidad.

Control de calidad convencional de las mezclas asfálticas.

A todas las mezclas asfálticas se les realizaron las llamadas pruebas convencionales, tales como el porcentaje de asfalto, granulometría ensayo Rice, Gravedad especifica bulk o densidad, las cuales describen su composición y las propiedades volumétricas de las mismas, que serán relacionadas con las propiedades dinámicas o reológicas.

Porcentaje de Asfalto.

Para la determinación cuantitativa del asfalto en las mezclas asfálticas, se utilizó el procedimiento de trabajo aplicando las normas ASTM D 2172 (1995), AASHTO T164, el cual realiza la separación del asfalto mediante la utilización de solventes químicos y filtros. Luego, con cálculos de pesos, en diferentes etapas del procedimiento se llega a la determinación del porcentaje requerido.

Granulometría en agregados extraídos.

La granulometría usual corresponde a la especificación: 1/2". MOP- 001 F-2002. TABLA 405-5.1., que es la más frecuentemente empleada para capas de rodadura en el Ecuador.

Los porcentajes pasados acumulados en dicha especificación se muestran en la tabla 8.

ABERTURA DE TAMICES		% PASADO	ESPEC. 1/2	' MOP 2002
No.	mm	ACUMULADO	Mínimo	Máximo
3/4"	19.00		100	100
1/2"	12.70		90	100
# 4	4.75		44	74
# 8	2.36		28	58
# 50	0.30		5	21
# 200	0.10		2	10
FONDO	FONDO			

Tabla 8: Especificación granulométrica para tamaño máximo nominal de ½"(12.5mm).

Densidad teórica máxima (Ensayo Rice).

Para medir la densidad teórica máxima, se utiliza el ensayo RICE, utilizando las normas ASTM D 2041, y AASHTO T 209, Estas normas determinan la gravedad y densidad teórica máxima de las mezclas asfálticas no compactadas a una temperatura de 25°C.

Gravedad específica "Bulk" o densidad.

Se realizará la toma de densidades o gravedad especifica Bulk, briquetas de asfaltos, considerando los procedimientos de las normas ASTM D 1188 y AASHTO T275.

Descripción del procedimiento de obtención de la gravedad específica "Bulk" o densidad de las briquetas.

Se toman los diferentes pesos de las muestras estos son; Peso seco, Peso sumergido en agua y peso superficialmente seco; para luego realizar los cálculos correspondientes. Para lo cual utilizaremos hojas electrónicas.

Se realiza el registro de los pesos secos, de las muestras. La Fig. 19, registra el procedimiento en mención.

Luego sumergimos las briquetas o muestras y registramos su peso. Vemos en la Fig. 20, la técnica utilizada para obtener este peso.

Fig. 20: Peso sumergido.

Se calcula el peso con la superficie superficialmente seca y luego realizamos el calculo del volumen y de la gravedad específica correspondiente.

Fig. 21: Peso con superficie superficialmente seca.

Se realizan los cálculos, mencionados, siguiendo las fórmulas mostradas a continuación.

Porcentaje de Vacíos.

Éste mide el porcentaje de vacíos con aire que se encuentran en las mezclas bituminosas ya sean estas densas o abiertas. Se utilizará la norma ASTM D 3203 y AASHTO T 269, para el cálculo de las mismas.

Para obtener el porcentaje de vacío es necesario determinar previamente la gravedad especifica bulk o densidad, ya descrita, al igual que la gravedad específica teórica maxima, y luego calcular según la fórmula siguiente:

% de vacíos = 100
$$1 - \frac{\text{Gravedad específica bulk}}{\text{Gravedad específica teórica máxima}}$$

Control de calidad con pruebas reológicas o de desempeño.

La reología es conocida como la ciencia del estudio de los fluidos de la materia, es decir relaciona el esfuerzo y deformación de un sólido, para unas condiciones dadas de presión y temperatura.

Uno de los objetivos de utilizar las pruebas reológicas o desempeño en el proceso de calidad de los pavimentos asfalticos es encontrar ecuaciones constitutivas para modelar el comportamiento de los materiales.

En el laboratorio de la UCSG contamos con el equipo Nottingham Asphalt Tester modelo NU-10, el cual aplica las cargas mediante un sistema neumático con servo-control, midiendo la fuerza aplicada por el transductor de la celda de carga. Este equipo utiliza una computadora, junto a un conjunto de programas que permiten desarrollar las distintas pruebas y procesar la información a través de ellos.

Se realizarán 3 tipos de pruebas dinámicas que se detallan a continuación:

- Módulo de rigidez, mediante deformación controlada.
- Módulo de rigidez por carga controlada más Fatiga.
- Deformación permanente (Creep dinámico).

Módulo de rigidez mediante deformación controlada.

Tanto este ensayo de módulo de rigidez como el ensayo de fatiga se realizaron empleando un cabezal de carga de tracción indirecta.

El módulo de rigidez se ensayó a una temperatura de 20°C, empleando un nivel de deformación controlada de 5 micrones y ondas sinusoidales con intervalo de tiempo entre el inicio del pulso de carga y el punto en el que la carga es máxima (tiempo de aplicación de carga) de 0,12 segundos.

Procedimiento para la determinación del Módulo de Rigidez, mediante deformación controlada utilizando el NAT.

Fig. 22: Paso1. Selección de la aplicación Stiffness micron.

Fig. 23: Paso 2. Pantalla de inicio y advertencias.

Fig. 24: Paso 3. Dar la orden de No imprimir los resultados.

Fig. 25: Paso 4. Permitir guardar los datos.

Fig. 26: Paso 5. Guardar el archivo previo al trabajo.

diameter moulded specimer	is or cores cut from the paveme	ent. Although moulded specime	is are used it should be
pavement. Specimens shoul	roperties may not be the same Id ideally be 60mm to 70mm this	as those of nominally identical i ck but thicknesses from 30mm to	80mm can be used.
Ensure that specimens and le	bading strips are free from surfa	ce dirt. Write the specimen ider	tification on the specimen
millimetre and mark two diam	suitable marker. Measure and r teters perpendicular to each off	hote specimen diameters and the her on one flat side of each spec	ticknesses to the nearest cimen. Refer to the
relevant standard procedure	for information about the correc	t method of determining specim	en dimensions.
Before testing it is important to	o ensure that the material is at th	he correct temperature. Some a	djustment is permitted if
the test temperature is within 1 deg.C. can cause a 10% dif	2 deg.C. of the target but it is nei flerence in measured stiffness r	cessary to know what the tempe nodulus.	rature is as a difference of
With the cam lever down	Adjust the crossbars so that	Wind the LVDTs out and	Ensure that the LVDT yok
the sample centrally on the	specimen. Tighten the	crossbars.	specimen is central.
	crossbars in position.		Tighten the clamps
lower loading strip.			and the second sec
lower loading strip.	- much m	L UNT	
lower loading strip.	crossbar	LVDT yoke	
crossbar	crossbar	LVDT yoke	
crossbar teme	erossbar	LVDT yoke	
crossbar crossbar ceme	crossbar	LVDT yoke	

Fig. 27: Paso 6. Continuar el ensayo.

Indi Select the test operator name. Add a new name or delete unwanted names from the list. Delete Note the specimen dimensions and name or reference number. Ensure that the specimen is in sound condition with no cracks. Remove any loose particles and dust. Check that the correct loading strips are clean.	irect Tensile Stiffness Modulus
03:13: :11:03:2013 2 Inicio G V & S V Documentol - Microsoft C3: itsm2	Exit Previous Continue

Fig. 28: Paso 7. Guardar el nombre del operador.

Operator Select the test operator name. Add a new name or delete unwarted names from the fat. Image: Image	Indirect Tensile Stiffness Modulus
0313: :11:03:2013	Exit Previous Continue

Fig. 29: Paso 7. Una vez ingresado el operador, presionar el botón continuar.

itsm3	
Data Entry	
Target test temperature - 20°C	st degree Celsius
Specimen diameter = 103 mms 🚔 To the neares	st millimetre
Specimen reference	×
Specimen Enter specimen reference or identifying number	OK
	Cancel
	for asphaltic materials)
Specref	
	d. Normally 124 ms
Target horizontal deformation = 5 µms	t micron. Normally 5
for 100mm dia	and 7 for 150mm dia.
Number of conditioning pulses = 5 Normally 5	
Specimen orientation - click button	
Test along first diameter	
Test along second diameter	
	Exit Previous Continue
Inicio 3 3 Solution and a second s	🛐 🗳 « 🕢 13:13

Fig. 30: Paso 8. Guardar el nombre de la muestra o archivo a trabajar.

En este paso, tendremos que seguir varias indicaciones luego de poner continuar, hay que seguir las recomendaciones dadas y luego. Poner aceptar.

13863	
Da	ata Entry
Target test temperature = 20°C	To the nearest degree Celsius
Specimen diameter = 103 mms	To the nearest millimetre
Specimen thickness = 56 mms	To the nearest millimetre
Poisson's ratio = 0.35	To the nearest 0.01 (0.35 for asphaltic materials)
Target risetime = 124 msecs	To the nearest millisecond. Normally 124 ms
Target horizontal deformation = 5 ums	To the nearest micron. Normally 5 for 100mm dia.
Number of conditioning pulses = 5	Normally 5
Specimen orientation - click button	
Test along second diameter	
03:13: :11:03:2013	
	Exit Previous Continue
😢 Inicio 🛛 🚱 🦉 🥭 🎽 👿 Documento1 - Microsoft 🛛 🗂 itsm	3 🔣 🖞 « 🚯 13:14

Fig. 31: Paso 9. Ingreso de parámetros al sistema.

itsm3			
	Data Entry		
Target test temperature = 2	0°C 🔶 To the near	est degree Celsius	
Specimen diameter = 103 m	ms 😝 To the near	est millimetre	
Specimen thickness = 56 m	To the near	est millimetre	
Poisson's ratio = 0 WARNING	1.35 🛆 To the near	est 0.01 (0.35 for asphaltic materie	uls)
Target ri: 👔 Push the I	TSM subframe into position under	the load actuator. d. Normally 124 ms	
Target horizontal	Aceptar	rmally 5 Omm dia.	
Number of conditioning pulses	■ Sormally 5		
Specimen orientation - click butto			
Test along second diameter	1		
03:13: :11:03:2013		Exit Previous Co	intinue
🏄 Inicio 🛛 🚱 🦉 🥌 🎽 👿 Documento1 - Microsoft	🗅 itsm3	ES 🦿	« 🚷 13:15

Fig. 32: Paso 10. Poner la muestra bajo el transductor de cargas.

Fig. 33: Paso 11. Indicamos al programa, hacer contacto con la muestra.

Fig. 34: Paso 12. Posicionamiento de los sensores.

itsm5	
	Pulse number
	Vertical force kN
	Horizontal stress kPa
	Risetime Milliseconds
	Horizontal defm Microns
WARNING	×
Raise the cam levers or	in the ITSM sub-frame so that the cross bars are lowered.
	[Acentar]
Holding force (N) = Text1 Col	nditioning pulses
strips to the specimen and enable the system to adjust to the required rise-t and horizontal deformation.	time START
03:13: :11:03:2013	Exit Previous Continue
🏄 Inicio 🛛 🎯 🦉 🥌 🎽 👿 Documento1 - Microsoft 🕅 🕲	itsm5 🖉 « 🕡 1

Fig. 35: Paso 13. Liberar la muestra de sus anclajes.

Pulse number
Vertical force kN
Horizontal stress kPa
Risetime Milliseconds
Horizontal defm Microns
Stiffness modulus MPa
Load area factor Ratio
Adjusted stiffness MPa
Holding force [N] = Newton= 13 Conditioning pulses The conditioning pulses bed the loading strips to the specimen and enable the system to adjust to the required rise-time and horizontal deformation.
03:13 :11:03:2013 Exit Previous Continue 2 Iniciol 2 Mic 200 1000 <t< th=""></t<>

Fig. 36: Inicio del Ensayo en su primer instancia.

itsm5	
Pulse number	5
Vertical force	0.97 kN
Horizontal stress	: 106.8 kPa
Risetime	127 Milliseconds
Horizontal defm	5.0 Microns
Stiffness modulus	E 2124 MPa
Load area factor	Ratio
Adjusted stiffness	s <mark>2177</mark> MPa
Holding force (N) = Conditioning pulses The conditioning pulses bed the loading strips to the specimen and enable the system to adjust to the required rise-time and horizontal deformation.	START
	Exit Previous Continue

Fig. 37: Fin del primer proceso.

Fig. 38: Re-calibración de los sensores.

Fig. 39: Verificación de las temperaturas, e inicio del ensayo.

m7							
P	ulse 1	Pulse 2		Pulse 3	Pulse 4		Pulse 5
Pulse No.	Vertical force (kN)	Horizontal stress (kPa)	Risetime (ms)	Horizontal defm (microns)	Pulse shape factor (%)	Stiffness mo Measured	dulus (MPa) Adjusted
1	0.96	105.7	127	4.9	0.643	2152	2198
2	0.95	104.9	126	4.9	0.644	2165	2212
3	0.95	104.6	125	4.9	0.640	2148	2190
4	0.97	106.8	124	5.0	0.638	2139	2179
5	0.95	105.1	126	5.0	0.649	2129	2179
Mean	0.96	105.4	126	4.9	0.643	2147	2191
03:13:	:11:03:2013		Com	mand	Exit	Previo	us Continue
nicio	¥ 🎒 » 🕅	Documento1 - Microso	R C. itse	n7			1 I I I I I I I I I I I I I I I I I I I

Fig. 40: Fin del ensayo, registro de los resultados.

Módulo de rigidez mediante carga controlada.

Es importante como necesario realizar el ensayo y la determinación del módulo de rigidez mediante el método de carga controlada, para realizar el ensayo de fatiga, y están estrictamente ligados, ya que un dato necesario para el análisis de los datos es este módulo, mediante la determinación de la rigidez, evaluada en la misma carga con la cual evaluaremos la muestra en el ensayo de fatiga.

Procedimiento para la determinación del Módulo de Rigidez, mediante carga controlada utilizando el NAT.

El procedimiento es exactamente el mismo que el realizado en el ensayo de determinación del módulo de rigidez por deformación controlada, con la diferencia de que en este ensayo hay que determinar la carga a la cual se realizará el ensayo.

Fig. 41: Selección de la aplicación Stiffness stress.

La diferencia, del procedimiento está en el cuadro de entrada de datos como lo indica la fig. 42, en donde se nos indica el lugar para ingresar el valor de la carga correspondiente a este ensayo.

Fig. 42: Ingreso de carga para el ensayo.

Ensayo de Fatiga.

El ensayo de fatiga se realiza empleando tensiones controladas en general entre 100 y 500 KPa, determinándose el número de pulsos requeridos para alcanzar una deformación vertical máxima de 5 mm. Condición en la cual la muestra se considera fallada. Estos pulsos también poseen un tiempo de aplicación de carga de 0,12 segundos. La temperatura para este ensayo fue de 20°C.

El desarrollo de la prueba de fatiga comienza con la determinación del módulo de rigidez (Sm) bajo la carga (σ), tal como lo expresamos anteriormente. Considerando también el coeficiente de Poisson (μ), con el valor de 0,35., de

esta manera la deformación por tracción inicial (ε) podrá determinarse por la expresión:

Los valores de ε se presentan en: $\frac{mm}{mm} \times 10^{-6}$

Procedimiento del Ensayo de Fatiga, utilizando el NAT.

Fig. 43: Selección de la aplicación Fatigue.

reep 1		
	The Indirect Tensile Fatigue	Test
The Indirect Tensile Fatigue Tes asphaltic material. However, with 150mm diameter samples can be	st (ITFT) is normally carried out on 10 h the higher load capacity of a hydra e tested.	00mm diameter by 40mm thick cores of ulic system, cores can be thicker and
Before fatigue testing, the stiffne used in the fatigue test. The ITS	ss modulus of each specimen should T test is best test method for doing th	d be determined at the stress to be iis.
By fatigue testing a number of sp material can be determined. This However, the tensile strain can b STRAIN = function(STRESS/STI Standard.	pecimens the relationship between te s relationship should be linear when te determined by using the relationsl FFNESS). Details of this relationship	ensile stress and fatigue life for the log stress is plotted against log life. hip: can be found in the Draft British
Having determined the tensile st log(tensile strain) and Ic WARNIN for comparing materials The specimen is fatigue sub-fram actuator LVDT t vertical defo	rain for each stress level it is possib G Do not put the test subframe directly under the load Aceptar	Ie to plot the relationship between A provides the basi actuator until instructed. I actuator
	Indirect tension	Crack
11:16: :04:11:2008 Cooper Research Technology Limit	ed	Exit Previous Continue

Fig. 44: Paso 1. Inicio del programa, solicitud de alejar la muestra.

Fig. 45: Paso 2. Continuar con la aplicación.

Add Delete If the specimen dimensions and name or reference number have not already been noted, this should be done at this stage. Note that the specimen ends should be flat and the specimen should be flat and the specimen should be flat and the specimen should be clean and free from loose particles. The stiffness modulus of the specimen should have been measured before this test is carried out.	ITFT
--	------

Fig. 46: Paso 3. Grabar el nombre del operador.

	Data Entry
Target	Test (Specimen reference
Specim	Enter specimen reference or identifying number OK Cancel
Specir	nen U jetette
Target rise	time = 120 milliseconds To the nearest millisecond num Deformation= 5 mm
Target hor	zontal stress - 700 kPa To the nearest 10 kPa Change: Blue x 50 kPa, Red x 10 kPa.
	Fxit Previous Continue

Fig. 47: Paso 4. Grabar el archivo y muestra.

3
Data Entry
Terrent test temperature = 2010
Specimen diameter = 102 mms
Specimen thickness = 46 mms
Target risetime = 120 milliseconds
Maximum Deformation= 5 mm
Target horizontal stress = 500 kPa To the nearest 10 kPa Change: Blue x 50 kPa, Red x 10 kPa.
Cooper Research Technology Limited

Fig. 48: Paso 5. Ingreso de parámetros.

Fig. 49: Mensajes del sistema, seguir lo aconsejado y continuar.

π 1(14	Actuator position Actuator (mm) 10 5 DOWN 9.6 mms 9.6 mms 0 0 Use the spin button to bring the actuator down until the loading rod is about 5mm to 15mm above the half ball in the top plate. Click on the 'Make contact' button when this has been done.
11:17: :04:11:2008 Cooper Research Techno	logy Limited

Fig. 50: Contacto del actuador de fuerzas y la muestra.

Number of load pulses vs Vertica	al deformation
START TE	EST
1 1	1 0000 1e+00f
Specimen: FTC14T20	Pulse number
Temperature = 20*C	H stress
Diameter = 102 mm	Risetime
Thickness = 46 mm	V defm
Target stress = 500 kPa	TC 1
And the second se	TO 9
	Start pane Start pane

Fig. 51: Inicio del ensayo.

Fig. 52: Fin del ensayo.

Deformación permanente (Creep dinámico).

La prueba de deformación permanente o de carga axial repetida, conocida como creep dinámico, se efectuó para estimar el comportamiento ante las deformaciones plásticas. Un ciclo de carga consiste en la aplicación de una tensión durante 1 segundo seguido por 1 segundo de descanso, es decir, se emplearon ondas cuadráticas. El ensayo se realizó a una temperatura de 40 °C, midiendo las deformaciones provocadas por 3600 repeticiones de cargas de 100 kPa. Según los criterios manejados en el laboratorio, bajo estas condiciones, una mezcla con un buen comportamiento a la deformación no deberá superar el valor de 1%.

Procedimiento del ensayo de deformación permanente (Creep Dinámico), utilizando el NAT.

Fig. 53: Selección de la aplicación Dynamic creep.

Fig. 54: Paso 1. Seleccionar RLA Test, para guardar los datos del ensayo.

Fig. 55: Mensaje inicio del procedimiento.

rla1				ES Español (México)):
	The R	epeated	Load Axial Test		
The Repeated Load Axi of asphaltic paving mate temperature and the res load pulses has been ay load applications is use RLA specimens are nor ends which have been p	al (RLA) test erials. An axia ultant axial st pplied. The re d to characte mally 100mm prepared by s	is used to al stress is rain is me esultant re rise resist or 150mm sawing an	assess the resistance to pe repeatedly applied to a sp asured at intervals until the lationship between axial str ance to permanent deforma diameter cylindrical sampl I/or polishing. The specime	ermenent deformatio ecimen at a specifie required number of ain and number of tion. es with flat and para n is loaded betweer	n d Ilel
ground and polished s	Enter the name	of the file in	which the test data is to be store	d	? ×
ends.	Guardar en:	C TESIS		- 🗈 💣 💷 -	
10% of the test stress Measurements of total are used to quantify re	Decumentos recientes Escritorio Mis documentos Mi PC	Creep iff its itst PASOS			
01:20: :16:01:2009	Mis sitios de red	Nombre:	filename	<u> </u>	Guardar
Cooper Research Technology Li		Tipo:	Text file (*.txt)/*.txt	_	Cancelar

Fig. 56: Paso 2. Guardar el archivo del ensayo.

Delete If the specimen dimensions and name or reference number have not already been noted, this should be done at this stage. Note that the specimen ends should be flat and parallel and coated with silicon grease and graphite powder as specified in the appropriate standard.	RLA
the appropriate standard.	

Fig. 57: Paso 3. Guardar el nombre del operador.

ria3	ES Español (México) 🛛 🙄	
Data Entry		
Target test temperature = 40°C To the nearest degree Cel Specimen diameter = 104 mms To the nearest millimetre Specimen reference XI Specimen t Enter specimen reference or identifying number OK Cancel Test dur Specimen	sius	
Conditioning stress = 10 kPa	3	
Exit	Previous Continue	

Fig. 58: Paso 4. Guardar archivo del ensayo.

rla3		🖸 🖸 Español (México) 😨 📮		
Data Entry				
Target test temperature = 40°C	\Rightarrow	To the nearest degree Celsius		
Specimen diameter = 104 mms	$\overline{\bigcirc}$	To the nearest millimetre		
Specimen thickness = 59 mms	\Rightarrow	To the nearest millimetre		
Test stress = 100 kPa	\ominus	To the nearest 10 kPa		
Test duration = 3600 pulses		To the nearest 100 pulses		
Conditioning stress = 10 kPa	\ominus	To the nearest 1 kPa		
Conditioning period = 30 seconds	\Rightarrow	To the nearest 30 seconds		
01:20: .:16:01:2009 Cooper Research Technology Limited		Exit Previous Continue		

Fig. 59: Paso 5. Ingreso de parámetros.

la3	Español (México)		
Data Entry			
Target test temperature = 40°C	rest degree Celsius		
Specimen diameter = 105 mms	rest millimetre		
Specimen thickness = 65 mms	rest millimetre		
Test stress = 100 kPa	rest 10 kPa		
Information Position the specimen centrally between the platens. Put the ball seating in place on the top platen. Position the specimen assembly centrally in the test frame. Aceptar Conditioning period = 30 seconds To the nearest 30 seconds			
01:20: :16:01:2009 Cooper Research Technology Limited	Exit Previous Continue		

tvor.2 tvor.2 tvor.2 tvor.2 the LVDTs so that the probes are almost completely retracted and the arrows become red.	Exception (weaked) 2 Transducer outputs LVDT-1 -18152 bits -2.96 mm LVDT-2 -28865 bits -4.71 mm Load cell 27 bits .01 kN Thermocouples TC-1= 19.7°C TC-2= 40.5°C
01:20: :16:01:2009 Cooper Research Technology Limited	Exit Previous Continue

Fig. 61: Paso 6. Ajuste de los sensores.

Fig. 62: Correcto ajuste de los sensores a la muestra.
a5 Español (Mé	ico) [🕽 📮
Actuator position	
Actuator (mm) 15 10.1 mms 10.1 mm	
01:20: :16:01:2009 Exit Previous	Continue

Fig. 63: Hacer contacto con la muestra.

Fig. 64: Inicio del ensayo.

Fig. 65: Ensayo en proceso.

Fig. 66: Fin del ensayo.

CAPÍTULO 3 – DESARROLLO EXPERIMENTAL Y RESULTADOS OBTENIDOS

Porcentaje de asfalto en muestras asfálticas.

Los resultados obtenidos, medidos en el laboratorio para cada planta, se muestran en las tablas que se presentan a continuación:

Prueba de extracción de asfalto de la planta Durán.

El resultado de la prueba de extracción de asfalto de la planta Durán se muestra en la tabla 9.

PLANTA: DURÁN	
PRUEBA DE EXTRACCIÓN DE ASFALTO).
W1. PESO DE LA MUESTRA DE MEZCLA ASFÁLTICA (gr):	1000.00
F1. PESO DEL FILTRO ANTES DE LA EXTRACCIÓN (gr):	9.30
W2. CONTENIDO DE HUMEDAD (gr):	0.00
W3A. PESO DE AGREG. LA VADOS EN CENTRÍFUGA (gr):	925.20
F2. PESO DEL FILTRO DESPUÉS DE LA EXTRACCIÓN (gr):	10.60
W3B = F2 - F1	1.30
W3. PESO AGREG. INCLUYENDO FILTRO (gr) (W3A+W3B):	926.50
W4. PESO DE MATERIAL MINERAL EN EXTRACTO (gr):	3.50
% DE ASFALTO = {[(W1-W2) - (W3+W4)] / (W1-W2)} * 100	7.00

Tabla 9: Prueba de extracción de asfalto de la planta Durán.

Prueba de extracción de asfalto de la planta Chivería.

El resultado de la prueba de extracción de asfalto de la planta Chivería se muestra en la tabla 10.

PLANTA: CHIVERÍA					
PRUEBA DE EXTRACCIÓN DE ASFAL	.TO.				
W1. PESO DE LA MUESTRA DE MEZCLA ASFÁLTICA (gr):	1000.00				
F1. PESO DEL FILTRO ANTES DE LA EXTRACCIÓN (gr):	8.10				
W2. CONTENIDO DE HUMEDAD (gr):	0.00				
W3A. PESO DE AGREG. LAVADOS EN CENTRÍFUGA (gr):	934.00				
F2. PESO DEL FILTRO DESPUÉS DE LA EXTRACCIÓN (gr):	9.50				
W3B = F2 - F1	1.40				
W3. PESO AGREG. INCLUYENDO FILTRO (gr) (W3A+W3B):	935.40				
W4. PESO DE MATERIAL MINERAL EN EXTRACTO (gr):	3.50				
% DE ASFALTO = {[(W1-W2) - (W3+W4)] / (W1-W2)} * 100	6.11				

Tabla 10: Prueba de extracción de asfalto de la planta Chivería.

Prueba de extracción de asfalto de la planta KM26.

El resultado de la prueba de extracción de asfalto de la planta KM26 se muestra en la tabla 11.

PLANTA: KM 26						
PRUEBA DE EXTRACCIÓN DE	PRUEBA DE EXTRACCIÓN DE ASFALTO.					
W1. PESO DE LA MUESTRA DE MEZCLA ASFÁLTICA	(gr): 998.80					
F1. PESO DEL FILTRO ANTES DE LA EXTRACCIÓN (g	r): 12.89					
W2. CONTENIDO DE HUMEDAD (gr):	0.00					
W3A. PESO DE AGREG. LA VADOS EN CENTRÍFUGA	(gr): 939.83					
F2. PESO DEL FILTRO DESPUÉS DE LA EXTRACCIÓN	(gr): 13.75					
W3B = F2 - F1	0.86					
W3. PESO AGREG. INCLUY ENDO FILTRO (gr) (W3A+	W3B): 940.69					
W4. PESO DE MATERIAL MINERAL EN EXTRACTO (gr): 3.00					
% DE ASFALTO = {[(W1-W2) - (W3+W4)] / (W1-W2)	} * 100 5.52					

Tabla 11: Prueba de extracción de asfalto de la planta KM26.

Prueba de extracción de asfalto de la planta Vía a la Costa.

El resultado de la prueba de extracción de asfalto de la planta Vía a la Costa se muestra en la tabla 12.

PLANTA: VÍA A LA COSTA						
	PRUEBA DE EXTRACCIÓN DE ASFALTO.					
W1. PESO DE LA	a muestra de	EMEZCLA ASFÁ	LTICA (gr):	1000.00		
F1. PESO DEL F	ILTRO ANTES I	DE LA EXTRACC	lÓN (gr):	8.60		
W2. CONTENIDO) de humedad	D (gr):		0.00		
W3A. PESO DE .	931.00					
F2. PESO DEL F	F2. PESO DEL FILTRO DESPUÉS DE LA EXTRACCIÓN (gr):					
W3B = F2 - F1				1.80		
W3. PESO AGRI	EG. INCLUYEN	DO FILTRO (gr) (W3A+W3B):	932.80		
W4. PESO DE M	ATERIAL MINE	RAL EN EXTRAC	TO (gr):	3.50		
% DE ASFALTC) = {[(W1-W2)	- (W3+W4)] / (W	′1-W2)} * 100	6.37		

Tabla 12: Prueba de extracción de asfalto de la planta Vía a la Costa.

Granulometría en agregados extraídos.

Los resultados obtenidos se muestran en las tablas mostradas a continuación.

Granulometría en agregados extraídos de la planta Duran.

Los resultados obtenidos resultado del ensayo de granulometría en agregados extraídos de la planta Durán, se observan en la tabla 13.

Tabla 13: Granulometría en agregados extraídos de planta Durán.

Granulometría en agregados extraídos de la planta Chivería.

Los resultados obtenidos resultado del ensayo de granulometría en agregados extraídos de la planta Chivería, se observan en la tabla 14.

GRANULOMETRÍA EN AGREGADOS EXTRAÍDOS. PLANTA: CHIVERÍA						
ABERTURA	DE TAMICES	PESO RET.	% RETENIDO	% PASADO	ESPEC. 1/2" M	/IOP 2002
No.	mm	ACUM. (gr)	ACUMULADO	ACUMULADO	Mínimo	Máximo
NO. 3/4" 1/2" # 4 # 8 # 50 # 200 FONDO ESPECIFICA	19.00 12.70 4.75 2.36 0.30 0.10 FONDO ACIÓN: 1/2". MC	ACOM. (gr) 0.0 58.0 362.0 512.0 796.0 897.0 938.9 DP- 001 F- 200 0 0 0 0 0 0 0 0 0 0 0 0	0.0 6.2 38.6 54.5 84.8 95.5 2. TABLA 405-5.	100.0 93.8 61.4 45.5 15.2 4.5 1.	100 90 44 28 5 2 2 100 90 80 70 60 50 60 50 60 50 40 30 20 10 0 0	100 100 74 58 21 10

Tabla 14: Granulometría en agregados extraídos de planta Chivería.

Granulometría en agregados extraídos de la planta KM26.

Los resultados obtenidos resultado del ensayo de granulometría en agregados extraídos de la planta KM26, se observan en la tabla 15.

GRANULOMETRÍA EN AGREGADOS EXTRAÍDOS. PLANTA: KM26						
ABERTURA	RA DE TAMICES PESO RET. % RETENIDO % PASADO ESPEC. 1/2" M					
No.	mm	ACUM. (gr)	ACUMULADO	ACUMULADO	Mínimo	Máximo
3/4" 1/2" # 4 # 8 # 50 # 200 FONDO ESPECIFICA	19.00 12.70 4.75 2.36 0.30 0.10 FONDO ACIÓN: 1/2". MC	0.0 54.6 386.4 558.6 825.3 916.7 943.7 DP- 001 F- 2002	0.0 5.8 40.9 59.2 87.5 97.1 2. TABLA 405-5.	100.0 94.2 59.1 40.8 12.5 2.9 1.	100 90 44 28 5 2 2 100 90 80 70 60 50 40 30 20 10 0 0	100 100 74 58 21 10

Tabla 15: Granulometría en agregados extraídos de planta KM26.

Granulometría en agregados extraídos de la planta Vía a la Costa.

Los resultados obtenidos resultado del ensayo de granulometría en agregados extraídos de la planta Vía a la Costa, se observan en la tabla 16.

GRANULOMETRÍA EN AGREGADOS EXTRAÍDOS. PLANTA: VÍA A LA COSTA						
ABERTURA	A DE TAMICES	PESO RET.	% RETENIDO	% PASADO	ESPEC. 1/2" N	IOP 2002
No.	mm	ACUM. (gr)	ACUMULADO	ACUMULADO	Mínimo	Máximo
3/4" 1/2" # 4 # 8 # 50 # 200 FONDO ESPECIFIC/	19.00 12.70 4.75 2.36 0.30 0.10 FONDO ACIÓN: 1/2". MOP-	0.0 40.0 309.0 440.0 800.0 902.0 936.3 001 F- 2002. TA	0.0 4.3 33.0 47.0 85.4 96.3 ABLA 405-5.1.	100.0 95.7 67.0 53.0 14.6 3.7	100 90 44 28 5 2 2 100 90 80 70 60 50 60 50 40 30 20 10 0 0	100 100 74 58 21 10

Tabla 16: Granulometría en agregados extraídos de planta Vía a la Costa.

Densidad teórica máxima. Ensayo RICE.

Los resultados obtenidos del ensayo RICE realizado a las plantas de Durán, Chivería, KM26 y Vía a la costa, se muestran en las tablas 17, 18, 19 y 20, respectivamente.

Ensayo RICE planta Durán.

ENSAYO RICE. PLANTA: DURÁN						
A: PESO DEL FRASCO + AGUA		3094.0 gr				
B: PESO DEL FRASCO + AGUA + MATER	RIAL	3643.0 gr				
C: PESO DE LA MEZCLA SUELTA		1000.0 gr				
RICE = C / [A - (B - C)] =	2.217					

Tabla 17: Resultados del ensayo RICE, de la planta Durán.

Ensayo RICE planta Chivería.

ENSAYO RICE PLANTA: CHIVERÍA.						
A: PESO DEL FRASCO + AGUA 3094.0 gr						
B: PESO DEL ERASCO + AGUA + MATERIAL 3700 5 gr						
C: PESO DE LA MEZCLA SUELTA			1000.0	gr		
RICE = C / [A - (B - C)] =	2.541			-		

Tabla 18: Resultados del ensayo RICE, de la planta Chivería.

Ensayo RICE planta KM26.

ENSAYO RICE. PLANTA: KM26						
A: PESO DEL FRASCO + AGUA			7191.0	gr		
B: PESO DEL FRASCO + AGUA + MATEF	RIAL		8097.0	gr		
C: PESO DE LA MEZCLA SUELTA			1503.0	gr		
RICE = C / [A - (B - C)] =	2.518					

Tabla 19: Resultados del ensayo RICE, de la planta KM26.

Ensayo RICE planta Vía a la Costa.

ENSAYO RICE. PLANTA: VÍA A LA COSTA						
A: PESO DEL FRASCO + AGUA			3098.0	gr		
B: PESO DEL FRASCO + AGUA + MATERIAL			3654.0	gr		
C: PESO DE LA MEZCLA SUELTA			1000.0	gr		
RICE = C / [A - (B - C)] =	2.252					

Tabla 20: Resultados del ensayo RICE, de la planta Vía a la costa.

Gravedad específica "Bulk" y Porcentaje de vacíos.

Los resultados obtenidos se muestran en las Tablas y figuras a continuación mostrados.

Gravedad específica bulk y porcentaje de vacíos en la planta Duran.

	PARÁMETROS VOLUMÉTRICOS: DENSIDAD Y % DE VACÍOS PLANTA: DURÁN											
Energía			Pesos	- I	Volumen	Densidad	Vacíos	Prome	dios			
de	BRIQUETAS	Peso muestra	Peso muestra	Peso muestra	Volumen	Gravedad Esp.	Vacíos en	Gravedad Esp.	Vacíos en			
Compactación		en aire (gr)	en agua (gr)	s.s.s. aire (gr)	(cm ³)	Bulk	mezcla (%)	Bulk	mezcla (%)			
	1-35-DU	1145.7	591.5	1146.1	554.6	2.066	6.83					
	2-35-DU	1078.9	555.2	1079.5	524.3	2.058	7.19					
35	3-35-DU	1101.6	567.9	1102.6	534.7	2.060	7.08					
	4-35-DU	1143.3	589.0	1144.9	555.9	2.057	7.24					
	5-35-DU	1162.2	595.9	1163.3	567.4	2.048	7.62	2.058	7.20			
	1-50-DU	1098.9	578.7	1101.1	522.4	2.104	5.13					
	2-50-DU	1135.8	599.0	1136.5	537.5	2.113	4.70					
50	3-50-DU	1071.3	560.5	1072.0	511.5	2.094	5.54	1				
	4-50-DU	1120.4	585.8	1121.3	535.5	2.092	5.64	1				
	5-50-DU	1123.6	590.6	1125.2	534.6	2.102	5.21	2.101	5.24			
	1-75-DU	1131.2	602.8	1131.5	528.7	2.140	3.50					
	2-75-DU	1080.0	574.3	1080.5	506.2	2.134	3.78	1				
75	3-75-DU	1107.0	590.3	1107.6	517.3	2.140	3.49	1				
	4-75-DU	1125.5	601.2	1126.4	525.2	2.143	3.35	1				
	5-75-DU	1173.0	625.7	1173.1	547.4	2.143	3.36	2.140	3.50			

Fig. 67: Gravedad específica o densidades, planta Durán.

Fig. 68: Gravedad específica promedio, planta Durán.

Fig. 69: Porcentaje de vacíos, planta Durán.

Fig. 70: Porcentaje de vacíos promedio, planta Durán.

Gravedad específica bulk y porcentaje de vacíos en la planta Chivería.

	PARÁMETROS VOLUMÉTRICOS: DENSIDAD Y % DE VACÍOS											
	PLANIA: CHIVERIA											
Energía		-	Pesos	-	volumen	Densidad	vacios	Prome	lios			
de	BRIQUETAS	Peso muestra	Peso muestra	Peso muestra	Volumen	Gravedad Esp.	Vacíos en	Gravedad Esp.	Vacíos en			
Compactació		en aire (gr)	en agua (gr)	s.s.s. aire (gr)	(cm ³)	Bulk	mezcla (%)	Bulk	mezcla (%)			
	1-35-CH	1240.8	720.8	1242.0	521.2	2.381	6.32					
	2-35-CH	1167.6	674.7	1168.0	493.3	2.367	6.86					
35	3-35-CH	1216.6	707.8	1217.1	509.3	2.389	6.00					
	4-35-CH	1210.3	701.3	1211.0	509.7	2.375	6.56					
	5-35-CH	1264.1	734.3	1266.1	531.8	2.377	6.46	2.378	6.44			
	1-50-CH	1259.0	745.0	1265.0	520.0	2.421	4.73					
	2-50-CH	1252.0	734.0	1253.0	519.0	2.412	5.07					
50	3-50-CH	1247.0	729.0	1247.0	518.0	2.407	5.27					
	4-50-CH	1252.0	732.0	1253.0	521.0	2.403	5.44					
	5-50-CH	1291.0	755.0	1291.0	536.0	2.409	5.22	2.410	5.15			
	1-75-CH	1289.0	760.0	1289.0	529.0	2.437	4.12					
	2-75-CH	1237.0	729.0	1238.0	509.0	2.430	4.37					
75	3-75-CH	1277.0	751.0	1277.0	526.0	2.428	4.47]				
	4-75-CH	1258.0	742.0	1259.0	517.0	2.433	4.25]				
	5-75-CH	1245.0	733.0	1246.0	513.0	2.427	4.50	2.431	4.34			

Tabla 22: Gravedad específica bulk y porcentaje de vacíos de la planta Chivería.

Fig. 71: Gravedad específica o densidades, Planta Chivería.

Fig. 72: Gravedad específica promedio, planta Chivería.

Fig. 73: Porcentaje de vacíos, planta Chivería.

Fig. 74: Porcentaje de vacíos promedio, planta Chivería.

Gravedad específica bulk y porcentaje de vacíos en la planta KM26.

	PARÁMETROS VOLUMÉTRICOS: DENSIDAD Y % DE VACÍOS PLANTA: KM26										
Energía			Pesos		Volumen	Densidad	Vacíos	Promedios			
de	BRIQUETAS	Peso muestra	Peso muestra	Peso muestra	Volumen	Gravedad Esp.	Vacíos en	Gravedad Esp.	Vacíos en		
Compactac		en aire (gr)	en agua (gr)	s.s.s. aire (gr)	(cm ³)	Bulk	mezcla (%)	Bulk	mezcla (%)		
	1-35-K26	1178.0	684.0	1182.0	498.0	2.365	6.04				
	2-35-K26	1243.0	720.0	1247.0	527.0	2.359	6.31				
35	3-35-K26	1198.0	697.0	1202.0	505.0	2.372	5.77				
	4-35-K26	1216.0	705.0	1220.0	515.0	2.361	6.21				
	5-35-K26	1208.0	701.0	1212.0	511.0	2.364	6.10	2.364	6.09		
	1-50-K26	1189.0	694.0	1191.0	497.0	2.392	4.97				
	2-50-K26	1199.0	696.0	1200.0	504.0	2.379	5.51				
50	3-50-K26	1232.0	719.0	1234.0	515.0	2.392	4.98				
	4-50-K26	1186.0	685.0	1184.0	499.0	2.377	5.59				
	5-50-K26	1149.0	665.0	1148.0	483.0	2.379	5.51	2.384	5.31		
	1-75-K26	1229.0	721.0	1230.0	509.0	2.415	4.09				
	2-75-K26	1181.0	692.0	1182.0	490.0	2.410	4.27				
75	3-75-K26	1201.0	704.0	1202.0	498.0	2.412	4.21]			
	4-75-K26	1206.0	706.0	1207.0	501.0	2.407	4.39	1			
	5-75-K26	1251.0	731.0	1251.0	520.0	2.406	4.44	2.410	4.28		

Tabla 23: Gravedad específica bulk y porcentaje de vacíos de la planta KM26.

Fig. 75: Gravedad específica o densidades, planta KM26.

Fig. 76: Gravedad específica promedio, planta KM26.

Fig. 77: Porcentaje de vacíos, planta KM26.

Fig. 78: Porcentaje de vacíos promedio, planta KM26.

Gravedad específica bulk y porcentaje de vacíos en la planta Vía a la Costa.

	PARÁMETROS VOLUMÉTRICOS: DENSIDAD Y % DE VACÍOS PLANTA: VÍA A LA COSTA										
Energía			Pesos		Volumen	Densidad	Vacíos	Promeo	dios		
de	BRIQUETAS	Peso muestra	Peso muestra	Peso muestra	Volumen	Gravedad Esp.	Vacíos en	Gravedad Esp.	Vacíos en		
Compactac		en aire (gr)	en agua (gr)	s.s.s. aire (gr)	(cm ³)	Bulk	mezcla (%)	Bulk	mezcla (%)		
	1-35-AV	1086.5	554.8	1091.4	536.6	2.025	10.10				
	2-35-AV	1128.3	584.8	1130.8	546.0	2.066	8.25				
35	3-35-AV	1056.4	545.3	1059.5	514.2	2.054	8.78				
	4-35-AV	1019.8	529.8	1022.1	492.3	2.072	8.03				
	5-35-AV	1132.3	578.6	1135.7	557.1	2.032	9.76	2.050	8.98		
	1-50-AV	963.5	511.1	965.0	453.9	2.123	5.75				
	2-50-AV	1103.8	578.5	1106.0	527.5	2.093	7.09				
50	3-50-AV	1075.8	566.6	1077.5	510.9	2.106	6.51				
	4-50-AV	1121.1	589.1	1123.0	533.9	2.100	6.77				
	5-50-AV	983.8	520.7	985.9	465.2	2.115	6.10	2.107	6.44		
	1-75-AV	964.6	515.4	965.8	450.4	2.142	4.91				
	2-75-AV	1025.1	548.9	1026.1	477.2	2.148	4.62				
75	3-75-AV	1067.1	567.9	1068.4	500.5	2.132	5.34				
1	4-75-AV	981.2	525.8	982.6	456.8	2.148	4.63				
	5-75-AV	943.4	505.3	944.9	439.6	2.146	4.72	2.143	4.84		

Tabla 24: Gravedad específica "bulk" y porcentaje de vacíos de la planta Vía a la costa.

Fig. 79: Gravedad específica o densidades, planta Vía a la Costa.

Fig. 80: Gravedad específica promedio, planta Vía a la Costa.

Fig. 81: Porcentaje de vacíos, planta Vía a la Costa.

Fig. 82; Porcentaje de vacíos promedio, planta Vía a la Costa.

Organización de las muestras a ensayar mediante pruebas reológicas.

Se muestra en la tabla 25, el detalle de las pruebas a las que será sometida cada muestra o briqueta en el proceso experimental de las pruebas reológicas.

Planta	Módulo Rigidez (STIFFNESS - MICRON)				Creep Dinámico (DYNAMIC CREEP)	
	1-DU-35	2-DU-35	3-DU-35	4-DU-35	5-DU-35	1-DU-35
DU	1-DU-50	2-DU-50	3-DU-50	4-DU-50	5-DU-50	1-DU-50
	1-DU-75	2-DU-75	3-DU-75	4-DU-75	5-DU-75	1-DU-75
	1-CH-35	2-CH-35	3-CH-35	4-CH-35	5-CH-35	1-CH-35
СН	1-CH-50	2-CH-50	3-CH-50	4-CH-50	5-CH-50	1-CH-50
	1-CH-75	2-CH-75	3-CH-75	4-CH-75	5-CH-75	1-CH-75
	1-K26-35	2-K26-35	3-K26-35	4-K26-35	5-K26-35	1-K26-35
K26	1-K26-50	2-K26-50	3-K26-50	4-K26-50	5-K26-50	1-K26-50
	1-K26-75	2-K26-75	3-K26-75	4-K26-75	5-K26-75	1-K26-75
	1-AV-35	2-AV-35	3-AV-35	4-AV-35	5-AV-35	1-AV-35
AV	1-AV-50	2-AV-50	3-AV-50	4-AV-50	5-AV-50	1-AV-50
	1-AV-75	2-AV-75	3-AV-75	4-AV-75	5-AV-75	1-AV-75

Tabla 25: Organización de las muestras, para pruebas reológicas.

Módulo de Rigidez mediante deformación controlada.

Los resultados obtenidos para todas las muestras ensayadas se muestran en la tabla 26.

Planta	No. Muestra ,,	Energía de compactación Golpes	Briqueta	Módulo Rigidez (Mpa) ▼
Durán	1	35	1-35-DU	1713
Durán	2	35	2-35-DU	1183
Durán	1	50	1-50-DU	2546
Durán	2	50	2-50-DU	2187
Durán	1	75	1-75-DU	4222
Durán	2	75	2-75-DU	2841
Chivería	1	35	1-35-CH	2911
Chivería	2	35	2-35-CH	3058
Chivería	1	50	1-50-CH	3259
Chivería	2	50	2-50-CH	3054
Chivería	1	75	1-75-CH	3313
Chivería	2	75	2-75-CH	3515
KM26	1	35	1-35-K26	2551
KM26	2	35	2-35-K26	2122
KM26	1	50	1-50-K26	2951
KM26	2	50	2-50-K26	2811
KM26	1	75	1-75-K26	3021
KM26	2	75	2-75-K26	3177
Vía a la Costa	1	35	1-35-AV	1179
Vía a la Costa	2	35	2-35-AV	1265
Vía a la Costa	1	50	1-50-AV	1865
Vía a la Costa	2	50	2-50-AV	1872
Vía a la Costa	1	75	1-75-AV	2191
Vía a la Costa	2	75	2-75-AV	2212

Tabla 26: Módulos de rigidez, mediante deformación controlada, todas las plantas.

Módulo de rigidez promedio, mediante deformación controlada, con una energía de compactación de 35 golpes.

Los resultados promedios de las pruebas realizadas a las 4 plantas, se muestran a continuación en la tabla 27, y en la figura 83.

Planta	М1-35 (Мра)	М2-35 (Мра)	Promedio 35 (Mpa)
Durán	1713	1183	1448
Chivería	2911	3058	2985
KM26	2551	2122	2337
Vía a la costa	1179	1265	1222

Tabla 27: Módulo de rigidez, mediante deformación controlada, Compactación 35 golpes.

Fig. 83: Módulo de rigidez promedio, mediante deformación controlada, compactación 35 golpes.

Módulo de rigidez promedio, mediante deformación controlada, con una energía de compactación de 50 golpes.

Los resultados promedios de las pruebas realizadas a las 4 plantas, se muestran a continuación en la tabla 28, y en la figura 84.

Planta	М1-50 (Мра)	M2-50 (Mpa)	Promedio 50 (Mpa)
Durán	2546	2187	2367
Chivería	3259	3054	3157
KM26	2951	2811	2881
Vía a la costa	1865	1872	1869

Tabla 28: Modulo de rigidez, mediante deformación controlada,Compactación 50 golpes.

Fig. 84: Módulo de rigidez promedio, mediante deformación controlada, compactación 50 golpes.

Módulo de rigidez promedio, mediante deformación controlada, con una energía de compactación de 75 golpes.

Los resultados promedios de las pruebas realizadas a las 4 plantas, se muestra a continuación en la tabla 29, y en la figura 85.

Planta	М1-75 (Мра)	М2-75 (Мра)	Promedio 75 (Mpa)	
Durán	4222	2841	3532	
Chivería	3313	3515	3414	
KM26	3021	3177	3099	
Vía a la costa	2191	2212	2202	

Tabla 29: Modulo de rigidez, mediante deformación controlada,Compactación 75 golpes.

Fig. 85: Módulo de rigidez promedio, mediante deformación controlada, compactación 75 golpes.

Ensayo de Módulo de Rigidez, mediante carga controlada y Fatiga.

Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta Durán.

Los resultados de las pruebas se muestran en la tabla 30 y se grafican en las figuras 86 y 87. Donde ε se encuentra calculado en $\frac{mm}{mm} \times 10^{-6}$.

	MÓDULO POR CARGA CONTROLADA Y FATIGA PLANTA: DURÁN									
Energía de	MUESTRA	CARGA	MÓDULO	No.	DEFORMACIÓN	TEMPERATURA				
Compactación	No.	(Kpa)	(Mpa)	REPETICIONES	CALCULADA	(°c)				
No. Golpes		σ	М	Ν	8	Т				
	2	100	1590	8541	129	20°				
35 Golpes	5	200	1781	1408	230	20°				
	1	300	949	471	648	20°				
	2	100	2532	17524	81	20°				
50 Golpes	5	200	1773	1709	231	20°				
	4	300	1653	583	372	20°				
	4	200	3537	8004	116	20°				
75 Golpes	5	300	3510	1978	175	20°				
	3	400	3071	708	267	20°				

Tabla 30: Módulo por carga controlada y fatiga, planta Durán.

Fig. 86: Relación Carga vs repeticiones, Planta Durán.

Fig. 87: Relación Deformación vs repeticiones, planta Duran.

Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta Chivería.

Los resultados de las pruebas se muestran en la tabla 31 y se grafican en las figuras 88 y 89. Donde ε se encuentra calculado en $\frac{mm}{mm} \times 10^{-6}$.

	MÓDULO POR CARGA CONTROLADA Y FATIGA PLANTA: CHIVERIA									
Energía de Compactación No. Golpes	MUESTRA No.	CARGA (Kpa) σ	MÓDULO (Mpa) M	No. REPETICIONES N	DEFORMACIÓN CALCULADA 8	TEMPERATURA (ºc) T				
	4	400	1781	1178	460	20°				
35	3	300	2629	7112	234	20°				
	5	200	3259	27852	126	20°				
	5	400	2009	1492	408	20°				
50	3	300	3005	6312	205	20°				
	4	200	3310	28727	124	20°				
	5	500	2733	990	375	20°				
75	3	400	2329	2782	352	20°				
	4	300	4630	12796	133	20°				

Fig. 88: Relación Carga vs repeticiones, Planta Chivería.

Fig. 89: Relación Deformación vs repeticiones, planta Chivería.

Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta KM26.

Los resultados de las pruebas se muestran en la tabla 32 y se grafican en las figuras 90 y 91. Donde ε se encuentra calculado en $\frac{mm}{mm} \times 10^{-6}$.

	MÓDULO POR CARGA CONTROLADA Y FATIGA PLANTA: KM26									
Energía de Compactación No. Golpes	MUESTRA No.	CARGA (Kpa)	MÓDULO (Mpa) M	No. REPETICIONES N	DEFORMACIÓN CALCULADA	TEMPERATURA (ºc) T				
	5	500		115	858	20°				
35	3	300	1910	1904	322	20°				
	1	200	1924	7494	213	20°				
	5	500	1361	145	753	20°				
50	3	300	2078	3416	296	20°				
	2	200	2342	15826	175	20°				
	5	500	1975	366	519	20°				
75	3	300	2776	4390	222	20°				
	2	200	2877	32944	143	20°				

Tabla 32: Módulo por carga controlada y fatiga, planta KM26.

Fig. 90: Relación Carga vs repeticiones, Planta KM26.

Fig. 91: Relación Deformación vs repeticiones, planta KM26.

Ensayo de Módulo de rigidez, mediante carga controlada y ensayo de fatiga de la planta Vía a la Costa.

Los resultados de las pruebas se muestran en la tabla 33 y se grafican en las figuras 92 y 93. Donde ε se encuentra calculado en $\frac{mm}{mm} \times 10^{-6}$.

MÓDULO POR CARGA CONTROLADA Y FATIGA PLANTA: VÍA A LA COSTA						
Energía de Compactación No. Golpes	MUESTRA No.	CARGA (Kpa) σ	MÓDULO (Mpa) M	No. REPETICIONES N	DEFORMACIÓN CALCULADA 8	TEMPERATURA (ºc) T
35	3	300	1008	936	610	20º
	4	200	1770	5872	232	20°
	5	100	2189	38530	94	20º
50	3	300	1793	1691	343	20°
	4	200	1897	8207	216	20º
	5	100	2494	45216	82	20º
75	4	400	2095	944	391	20º
	3	300	2117	2685	291	20°
	5	200	3982	24640	103	20°

Tabla 33: Módulo por carga controlada y fatiga, planta Vía a la costa.

Fig. 92: Relación Carga vs repeticiones, Plata Vía a la costa.

Fig. 93: Relación Deformación vs repeticiones, planta Vía a la Costa.
Ensayo de deformación permanente. (Creep Dinámico).

Los resultados de los ensayos realizados a las 4 plantas con las briquetas o muestras seleccionadas se muestran en la Tabla 34, y se grafican en la figura 94.

Ensayo Creep Dinámico						
Porcentaje de deformación axial.						
Energía Planta	35	50	75			
Durán	1.94	1.66	0.96			
Chivería	1.30	1.09	1.00			
KM26	1.57	1.52	0.97			
Vía a la Costa	1.09	0.82	0.81			
*Todos los valores representan Porcentaje de deformación axial.						

Tabla 34: Resultados del ensayo Creep Dinámico.

Fig. 94: Relación Porcentaje de deformación axial y energía de compactación.

CAPÍTULO 4 – ANÁLISIS DE LOS RESULTADOS

Porcentaje de asfalto en las muestras.

El resultado de este porcentaje fue muy aproximado al suministrado por las plantas óptimo de diseño.

Porcentaje de Asfalto					
Planta	% Asfalto Óptimo	% Asfalto experimental			
Durán	7.0%	7.0%			
Chivería	6.0%	6.1%			
KM26	5.5%	5.5%			
Vía a la Costa	6.2%	6.4%			

Tabla 35: Porcentaje de asfalto.

La diferencia entre los porcentajes óptimos y calculados no es mayor al 0.3%, por lo que se consideran adecuados.

Granulometría en agregados extraídos.

En general, las curvas granulométricas cumplen con los requerimientos de diseño del MTOP.

Densidad teórica máxima. Ensayo RICE.

Experimentalmente se tiene los siguientes valores, los cuales se encuentran dentro del rango de 2.2 a 2.6, siendo Durán la planta que tiene un número menor y Chivería un número mayor.

La densidad teórica máxima, en este caso determinada mediante el ensayo RICE, tiene una relación directa con el porcentaje de vacíos de la mezcla y es muy sensible en su determinación y calculo.

Densidad teórica máxima				
Planta	Ensayo RICE			
Durán	2.217			
Chivería	2.541			
KM26	2.518			
Vía a la Costa	2.252			

Tabla 36: Densidad teórica máxima, ensayo RICE.

Gravedad específica "Bulk" o Densidad.

La gravedad especifica o densidad de las muestras aumenta a medida que aumenta la energía de compactación.

Ordenando de mayor a menor los resultados de las densidades, a una energía de compactación de 75 golpes tendríamos: Durán. Vía a la costa, KM26 y Chivería, respectivamente.

Gravedad especifíca "Bulk"o Densidad					
	Energía de Compactación				
Planta	35	50	75		
Durán	2.058	2.101	2.140		
Chivería	2.378	2.410	2.431		
KM26	2.364	2.384	2.410		
Vía a la Costa	2.050	2.107	2.143		

Tabla 37: Resultados de los ensayos de gravedad específica "Bulk".

Porcentaje de Vacíos.

El porcentaje de vacíos de las muestras disminuye a medida que aumenta la energía de compactación.

Ordenando de menor a mayor, los resultados de los porcentaje de vacíos, a una energía de compactación de 75 golpes tendríamos: Durán, KM26 y Chivería y Vía a la costa respectivamente

Porcentaje de vacíos						
	Energía de Compactación					
Planta	35 50 75					
Durán	7.20%	5.24%	3.50%			
Chivería	6.44%	5.15%	4.34%			
KM26	6.09%	5.31%	4.28%			
Vía a la Costa	8.98%	6.44%	4.84%			

Tabla 38: Porcentaje de vacíos, resultados generales.

Módulo de rigidez mediante deformación controlada.

Los resultados muestran que el módulo de rigidez aumenta, a medida que aumenta la energía de compactación y disminuye el porcentaje de vacíos. Este efecto, que ocurre en cada planta. Se puede apreciar en la tabla 39 y graficado en la figura 95.

Relación							
Módulo rigidez promedio y porcentaje de vacíos							
Energía de compactación	35		50		75		
	Modulo		Modulo		Modulo		
Porcentajes	Rigidez	%	Rigidez	%	Rigidez	%	
Planta.	Promedio	Vacíos	Promedio	Vacíos	Promedio	Vacíos	
	(MPa)		(MPa)		(MPa)		
Durán	1448	7.20	2367	5.24	3532	3.50	
Chivería	2985	6.44	3157	5.15	3414	4.34	
KM26	2337	6.09	2881	5.31	3099	4.28	
Vía a la Costa	1222	8.98	1869	6.44	2202	4.84	

Tabla 39: Módulo de rigidez promedios, resultados generales.

Fig. 95: Relación del Módulo de rigidez y el porcentaje de vacíos.

De acuerdo a la práctica internacional, una buena mezcla asfáltica debidamente compactada debe originar módulos de rigidez, bajo las condiciones de ensayo empleadas, superiores a 3000 MPa. Entre 3000 y 2000 MPa el comportamiento puede ser variable. Por debajo de 2000 MPa la capacidad estructural es inadecuada.

Como se observa en la tabla 39, las plantas Durán, Chivería y KM26 dan resultados satisfactorios para una buena compactación (75 golpes), no así la planta de Vía a la Costa, cuyo promedio de 2202 MPa, nos alerta de un comportamiento variable.

Para 50 golpes de compactación, con vacíos que pudieran ser aceptados en obra, la planta Chivería arroja un módulo aceptable (mayor a 3000MPa).

Fatiga.

Se puede observar en el desarrollo experimental que en todos los ensayos realizados a las diferentes plantas, aquellas mezclas con una mayor rigidez bajo una carga aplicada, tienen un mayor número de repeticiones para llegar al estado de fatiga y deformarse, como el criterio de este ensayo, mayor a 5mm. En esencia, los módulos determinados bajo las menores cargas aplicadas (100 o 200 KPa), ofrecen los módulos mayores, a los cuales les corresponderán las menores deformaciones por tracción (de acuerdo a la ecuación mostrada en la Página 40) y las mayores repeticiones para el fallo, es decir, la mejor respuesta a la fatiga.

Se puede observar en los gráficos de fatiga de todas las muestras, que las mezclas con mayor rigidez a deformación controlada (75 golpes), corresponden a las rectas de ajustes que se encuentran más desplazadas hacia la parte superior. En la relación realizada con la carga de ensayo, como lo indica la figura 96.

Fig. 96: Relación típica entre carga y repeticiones.

Analizando la relación de la deformación y el número de repeticiones para llegar al fallo, tenemos un resultado inverso a la relación anterior, mostrado en la figura 97.

Fig. 97: Relación típica entre deformación y repeticiones.

La rigidez de una capa asfáltica influye en la deformación por tracción (en la parte inferior de dicha capa) de manera opuesta que en la tensión. Es decir, al incrementarse la rigidez (en nuestro caso con el aumento del número de golpes a 75) se reduce la deformación y aumenta la tensión en la capa. Consecuentemente, una capa rígida es deseable para prevenir el inicio de las grietas, pero acelerará su subsiguiente propagación.

Deformación permanente (Creep Dinámico).

Los resultados obtenidos son en general positivos o buenos ya que para una energía de compactación de 75 golpes por cara, que correspondería al 100% de la energía aplicada en el campo, se tienen valores inferiores al 1% de deformación.

Al relacionar el porcentaje de deformación permanente con el porcentaje de vacíos podemos darnos cuenta que se mantiene una estrecha relación entre ambos y marcan una tendencia. Y en nuestras mezclas ensayadas se da, que mientras se maneje un % de vacíos menor (en un rango entre 3.50% y 4.84%), se tendrá una menor deformación axial.

Es decir que, en las mezclas de todas las plantas analizadas, de aplicarse un 100% de la energía de compactación, se alcanzan valores de deformación por debajo o igual que 1%, por lo que estas mezclas tendrían un buen comportamiento a las deformaciones plásticas. No obstante, para los vacíos menores de 6.44% correspondientes a la tabla 40 y para 50 golpes por cara, las deformaciones de 3 plantas ya superarían el límite de 1%. Nótese que estos vacíos en general cumplirían los criterios actuales de aceptación en obra.

Relación Porcentaje deformación axial y porcentaje de vacíos							
Energía de compactación	35		50		75		
Porcentajes Planta.	% Deformación axial	% Vacíos	% Deformación axial	% Vacíos	% Deformación axial	% Vacíos	
Durán	1.94	7.20	1.66	5.24	0.96	3.50	
Chivería	1.30	6.44	1.09	5.15	1.00	4.34	
KM26	1.57	6.09	1.52	5.31	0.97	4.28	
Vía a la costa	1.09	8.98	0.82	6.44	0.81	4.84	

Tabla 40: Porcentaje de deformación axial y porcentaje de vacíos.

Fig. 98: Gráfico de porcentajes de deformación axial y vacíos.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES.

- Las pruebas de desempeño permiten vincular la calidad evaluada a nivel de laboratorio con el comportamiento real de las mezclas en obra, en este caso su capacidad estructural (Módulo de rigidez), su resistencia a deformarse (creep dinámico) y su resistencia a fisurarse (fatiga).
- Las pruebas de módulo de rigidez y creep dinámico tienen al momento ciertas exigencias o especificaciones válidas aunque posibles de perfeccionar o ajustar para nuestro tráfico y clima.
- 3. En el caso de la fatiga, el fenómeno a investigar y el manejo de exigencias se hace más complejo, ya que la magnitud de las deformaciones esperadas depende del espesor de la capa asfáltica, del resto de la estructura del pavimento, de las cargas actuantes y del clima. Es decir el comportamiento a la fatiga de una mezcla, en un caso en particular, pudiera ser bueno o malo de acuerdo, por ejemplo, a la estructura del pavimento existente.
- 4. Es importante considerar que mezclas asfálticas colocadas en obra que cumplen con los requisitos de compactación, osea, porcentaje de huecos menores a 6.5%, no cumplirían con algunas de las pruebas de desempeño. Este detalle implica la necesidad de perfeccionar los diseños para considerar en los mismos la incidencia de una densidad relativa mínima del 97%, valor recomendado en el país.
- 5. Si bien los diseños convencionales por el método Marshall y los controles de calidad convencionales son válidos y permiten un primer paso hacia

mezclas bien fabricadas y colocadas, es imprescindible el empleo de pruebas de desempeño para perfeccionar los diseños y controles.

6. Se debe acometer con mayor intensidad el estudio del fenómeno de fatiga a muestras asfálticas.

RECOMENDACIONES.

- Es necesario realizar la confección de las briquetas de mezclas asfálticas, siguiendo correctamente los procedimientos indicados, para garantizar así un resultado confiable de resultados.
- 2. El equipo empleado debe ser el adecuado y técnicamente calificado, para la determinación de pesos, medidas y demás estimaciones necesarias, en cuanto a parámetros geométricos y volumétricos. Para, de esta manera, no generar errores iniciales que incidan en falsos y erróneos resultados posteriores.
- 3. Dentro del proceso de confección de las briquetas de asfalto es necesario no saltarnos procedimientos o realizarlos incorrectamente, y poner especial atención a los procedimientos de enfriamiento y compactación. Dejando enfriar las briquetas dentro de su molde, para evitar deformaciones, y compactando el número de golpes de la energía de compactación necesaria para el respectivo ensayo a realizar.
- Llevar un trabajo organizado, con un debido etiquetado y registro de datos, nos ayudara a reducir la probabilidad de cometer errores, disminuyendo las posibilidades de entregar malos resultados.
- 5. La geometría de las briquetas o muestras de asfalto, deben guardar relaciones simétricas y uniformes para que el Nottinghan Asphalt Tester, (NAT), pueda evaluar y proceder correctamente. Variaciones o distorsiones, son algunas veces inevitables, sobre todo en núcleos extraídos en campo. pero deben evitarse en lo posible o modificarse de

manera que no afecte el resultado de la muestra. Guardando sus propiedades esenciales

6. La temperatura dentro de la cabina del NAT, debe ser cuidadosamente mantenida y evitar en lo posible cambios bruscos, y se deben mantener las muestras como mínimo 2 horas a la temperatura de ensayo deseado, antes de iniciar un periodo de pruebas. Para el efecto tratar en lo posible de mantener exteriormente una temperatura cercana a la interior.

BIBLIOGRAFÍA

- American Association of State Highway and Transportation Officials: AASHTO Guide for the Design of Pavement Structures. U.S.A., 1993.
- Committee European of Normalization CEN 12697. Bituminous mixtures. Test methods for hot mix asphalts Part 26: Stiffness. Annex C. 2000.
- Committee European of Normalization CEN 12697. Bituminous mixtures. Test methods for hot mix asphalts Part 25: Cyclic compression test. Part A. 2000.
- Cooper Research Technology Limited. NU-10 & NU- 5. Operation & Maintenance Manual. United Kingdom, 2002.
- Ministerio de Obras Públicas y Comunicaciones. Especificaciones Técnicas para la Construcción de Carreteras y Puentes. MOPT-001-F, Quito - Ecuador, 2002.
- Rondón, H.A.; Reyes, F.A.; González; L.A.; Vázquez S. E. Ahuellamiento y fatiga en mezclas asfálticas. Bogotá – Colombia: Editorial UD. Primera Edición. 2012.
- Normas de Ensayos de Materiales para Carreteras. Tomo III. Materiales y mezclas asfálticas. Instituto Nacional de Vías. 1998. Bogotá. Colombia.
- ASEFMA. IV Jornada Nacional. Madrid. 2009.
- Asphalt Institute. Mix design methods for asphalt concrete. MS-2. Sixth Edition. 2002.
- E.R.Brown, P.S.Kandhal. Performance testing for hot mix asphalt. Auburn University. NCAT Report 01-05. 2001.
- H. Yang. *Pavement analysis and systems*. Mc Graw-Hill. 1995.