

TÌTULO:

VERIFICACIÓN DEL FACTOR DE REDUCCIÓN SÍSMICO R, PARA EL ANÁLISIS INELÁSTICO DE ESTRUCTURAS DE HORMIGÓN ARMADO DE ACUERDO AL NEC-11

AUTOR:

Pinoargote Rovello, Vianna Andrea

Trabajo de Graduación previo a la obtención del título de: INGENIERO CIVIL

TUTOR:

Ing. Hernández Barredo, Jaime

Guayaquil, Ecuador

2014

CERTIFICACIÓN

Certificamos que el presente trabajo fue realizado en su totalidad por **Vianna Andrea Pinoargote Rovello** como requerimiento parcial para la obtención del Título de **Ingeniero Civil**

TUTOR

Ing. Jaime Hernández Barredo

REVISORES

Ing. Xavier Casal Rodríguez

Lcda. Ruth Zambrano

DIRECTOR DE LA CARRERA

Ing. Mario Dueñas Rossi

Guayaquil, a los 17 del mes de Marzo del año 2014

DECLARACIÓN DE RESPONSABILIDAD

Yo, Vianna Andrea Pinoargote Rovello

DECLARO QUE:

El Trabajo de Titulación Verificación del Factor de Reducción Sísmico R, para el Análisis Inelástico de Estructuras de Hormigón Armado de acuerdo al NEC -11 previa a la obtención del Título de Ingeniera Civil, ha sido desarrollado en base a una investigación exhaustiva, respetando derechos intelectuales de terceros conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico del Trabajo de Titulación referido.

Guayaquil, a los 17 del mes de Marzo del año 2014

LA AUTORA

Vianna Andrea Pinoargote Rovello

AUTORIZACIÓN

Yo, Vianna Andrea Pinoargote Rovello

Autorizo a la Universidad Católica de Santiago de Guayaquil, la **publicación** en la biblioteca de la institución del Trabajo de Titulación: **Verificación del Factor de Reducción Sísmico R, para el Análisis Inelástico de Estructuras de Hormigón Armado de acuerdo al NEC -11** cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.

Guayaquil, a los 17 del mes de Marzo del año 2014

LA AUTORA:

Vianna Andrea Pinoargote Rovello

AGRADECIMIENTO

Agradezco a mis padres por el apoyo que me han dado durante toda mi vida y a Dios, porque a pesar de haberme encontrado con varias piedras que me han hecho tropezar a lo largo del camino, he logrado recuperarme, levantarme y seguir adelante.

Vianna Pinoargote Rovello

DEDICATORIA

A mis padres y a mi querida Micaela Zambrano, "Miquita", quienes han sido mi inspiración toda mi vida.

Vianna Pinoargote Rovello

TRIBUNAL DE SUSTENTACIÓN

Ing. Jaime Hernández Barredo TUTOR

Ing. Xavier Casal Rodríguez PROFESOR DELEGADO

CARRERA DE INGENIERÍA CIVIL

CALIFICACIÓN

Ing. Jaime Hernández Barredo TUTOR

ÍNDICE GENERAL

CAPÍTULO I	1
1. 1. INTRODUCCIÓN	1
1. 2. OBJETIVOS	4
1.2. 1 OBJETIVO GENERAL	4
1.2. 2. OBJETIVOS ESPECÍFICOS	4
CAPÍTULO II	5
2. MARCO TEÓRICO	5
2. 1. FACTOR DE REDUCCIÓN DE FUERZAS SÍSMICAS R	5
2. 2. ESTUDIOS BASADOS EN LA OBTENCIÓN DEL FACTOR DE REDUCCIÓN SÍSMICO R	6
2.2. 1. Newmark & Hall (1973)	6
2.2. 2. Newmark & Hall (1982)	8
2.2. 3. Witthaker A. (1987)	9
2.2. 4. ATC-19 (1995)	9
2.2. 5. Aguiar R. (2007)	. 11
2. 3. VALORES DEL FACTOR R PROPUESTOS POR CÓDIGOS	. 13
2.3. 1. Código Ecuatoriano de la Construcción (CEC-2007)	. 13
2.3. 2. Norma Ecuatoriana de Construcción (NEC-11)	. 13
2.3. 3. American Society of Civil Engineers (ASCE-7-05)	. 14
CAPÍTULO III	. 17
3. HERRAMIENTAS NECESARIAS PARA EL CÁLCULO DEL COMPORTAMIENTO NO-LINEAL E	DE
ESTRUCTURAS DE HORMIGÓN ARMADO POR MEDIO DEL MÉTODO PUSHOVER	. 17
3. 1. DUCTILIDAD	. 17
3. 2. COMPORTAMIENTO DEL HORMIGÓN	. 18
3.2. 1 Hormigón no confinado	. 18
3.2. 2. Hormigón confinado	. 20
3. 3. MODELOS DE CURVAS ESFUERZO-DEFORMACIÓN DEL HORMIGÓN	. 21
3.3.1. Modelo de hormigón no confinado	. 22
3.3. 2. Modelo de hormigón confinado	. 23
3. 4. COMPORTAMIENTO DEL ACERO	. 30
3. 5. MODELOS DE CURVAS ESFUERZO - DEFORMACIÓN DEL ACERO	. 33

3.5. 1. Modelo de Park & Paulay (1975)	33
3.5. 2. Modelo de Ahmad & Shah (1985)	35
3. 6. DIAGRAMA DE MOMENTO - CURVATURA	35
3.6. 1. Curvatura de un Elemento	36
3.6. 2. Procedimiento para Calcular el Diagrama Momento – Curvatura	37
3.6. 3. Deformaciones a partir de Curvaturas	38
3.6. 4. Ejemplo de Aplicación de Diagrama Momento – Curvatura y de Fuerza – Desplazamiento	40
3. 7. RESULTADOS OBTENIDOS	58
3. 8. RESUMEN DE CAPÍTULO I, II, III, IV	59
CAPITULO IV	61
4. DESCRIPCIÓN DE LA ESTRUCTURA EN ESTUDIO	61
4. 1. DESCRIPCIÓN DE LA GEOMETRÍA DE LOS PÓRTICOS	61
4. 2. PROPIEDADES DE LOS ELEMENTOS ESTRUCTURALES	64
CAPITULO V	68
5. MÉTODO DE ESPECTRO DE CAPACIDAD	68
5. 1. CÁLCULO DE LA CURVA PUSHOVER POR MEDIO DEL PROGRAMA SAP 2000	69
5. 2. CÁLCULO DEL ESPECTRO ELÁSTICO SEGÚN NEC-11	74
5. 3 CÁLCULO DE MÉTODO DE ESPECTRO DE CAPACIDAD	77
5.3. 1. Espectro de Capacidad	77
5.3. 2. Espectro de Demanda	77
CAPÍTULO VI	83
6. CÁLCULO DEL FACTOR DE REDUCCIÓN DE FUERZAS SÍSMICAS (R)	83
6. 1. CÁLCULO DEL FACTOR DE DUCTILIDAD ($m{R}\mu$)	83
6. 2. CÁLCULO DEL FACTOR DE SOBRE-RESISTENCIA ($R arOmega$)	84
6. 3. CÁLCULO DEL FACTOR DE REDUNDANCIA (RR)	87
6. 4. RESULTADOS OBTENIDOS DEL FACTOR DE REDUCCIÓN R	89
CAPÍTULO VII	91
7. ANÁLISIS DE RESULTADOS, CONCLUSIONES Y RECOMENDACIONES	91
7. 1. RESULTADOS	91
7. 2. CONCLUSIONES	96
7. 3. RECOMENDACIONES	97

ANEXOS
Anexos 1
COLUMNA B4 (70X50) 100
COLUMNA B4 (50X70) 115
Anexos 2
COLUMNA D4 (70X50) 123
COLUMNA D4 (50X70)131
Anexos 3
Puntos obtenidos de la curva Esfuerzo – Deformación de Mander (1988)
Anexos 4
Tabla para rótulas plásticas de vigas de hormigón armado (FEMA 356-0
Tabla para rótulas plásticas de columnas de hormigón armado (FEMA 356-0
Anexos 5
Espectro Elástico según el NEC-11143
Anexos 6
Gráficas obtenidas para cada pórtico mediante el Método Espectro Capacidad 144
BIBLIOGRAFÍA 153

ÍNDICE DE GRÁFICOS

Fig. 1. Valores del Factor R propuestos por Newmark & Hall (1973). Miranda E & Bertero	V
(1994)	7
Fig. 2. Curva de capacidad sísmica y factores $R\mu$ y $R\Omega$. Mwafy y Elnashai (2002)	. 10
Fig. 3. Comportamiento de la curva carga-deflexión de un miembro a flexión (Park R &	
Paulay (1978))	. 17
Fig. 4. Curvas esfuerzo-deformación para cilindros de concreto cargados a compresión	
uniaxial. Priestley & Paulay (1992)	. 19
Fig. 5. Confinamiento por a) estribos, b) hélice. Park R. & Paulay (1978)	. 20
Fig. 6. Efecto del espaciamiento del acero transversal. Park R. & Paulay (1978)	. 21
Fig. 7. Curva esfuerzo-deformación del hormigón a compresión. Hognestad (1951)	. 22
Fig. 8. Curva de esfuerzo-deformación para hormigón confinado por estribos. Kent & Par	k
(1971)	. 23
Fig. 9. Curva de esfuerzo-deformación de Park Modificado	. 26
Fig. 10. Curva esfuerzo-deformación usando el Modelo de Mander (1988)	. 27
Fig. 11. Gráfica para obtener K, factor de esfuerzo confinado. Mander (1988)	. 29
Fig. 12. Zonas que definen la curva esfuerzo-deformación. ROMO M. Escuela Superior	
Politécnica del Ejército-Ecuador	. 31
Fig. 13. Curvas Esfuerzo – Deformación para acero de diferentes resistencias. Nilson (199	9)
	. 32
Fig. 14. Curva esfuerzo-deformación de Park & Paulay (1975)	. 34
Fig. 15. Deformación de un miembro a flexión. Park & Paulay (1978)	. 36
Fig. 16 Diagrama de deformación unitaria	. 37
Fig. 17. Diagrama de Esfuerzos y Fuerzas de compresión y tensión	. 38
Fig. 18. Distribución de curvatura real en una columna en voladizo. Park & Paulay (1978)	. 39
Fig. 19. Distribución idealizada de curvatura para un elemento en voladizo. Park & Paulay	y
(1978)	. 39
Fig. 20. Planta tipo de edificio a analizar.	. 41
Fig. 21. Curva Esfuerzo-Deformación. Modelo de Park & Paulay (1975)	. 45
Fig. 22. Curva Esfuerzo-Deformación. Modelo de Mander (1988)	. 47
Fig. 23. Modelo de estructura de hormigón armado. ETABS 9.0	. 48
Fig. 24. Comparación de Diagrama Momento – Curvatura. Columna B4 (70x50)	. 51
Fig. 25. Comparación de curva Fuerza-Desplazamiento. Columna B4 70x50	. 53
Fig. 26. Comparación de Diagrama Momento –Curvatura. Columna B4 (50x70)	. 55
Fig. 27. Comparación de Diagrama Momento-Curvatura. Columna D4 (70x50)	. 56
Fig. 28. Comparación de Diagrama Momento – Curvatura. Columna D4 (50X70)	. 57
Fig. 29. Planta tipo de estructura a analizar	. 61
Fig. 30. Pórtico en 2D, Ejes 1, 2, 4 y 5	. 62
Fig. 31. Pórtico en 2D, Eje A Fig. 32. Pórtico 2D, Eje B	. 63
Fig. 33. Pórtico 2D, Eje C, Eje D	. 64
Fig. 34. Parámetros de confinamiento establecidos por la NEC-11	. 67
Fig. 35. Método de Espectro Capacidad	. 68

Fig. 36 Rótulas plásticas para Vigas de hormigón armado. (Conforming transverse	
reinforcement)	70
Fig. 37. Definición de la carga muerta como estática no lineal	71
Fig. 38. Definir el PUSHOVER	72
Fig. 39. Control de Aplicación de carga, "Displacement Control"	73
Fig. 40. Número de pasos a analizar	73
Fig. 41. Espectro sísmico elástico de aceleraciones (NEC-11)	74
Fig. 42. Espectro Elástico (NEC-11)	76
Fig. 43. Descripción del Método del Espectro de Capacidad para determinar el punto d	de
demanda. VIERA (2004)	85
Fig. 44. Pórtico Eje 1. Primer caso: No confinado adecuadamente	87
Fig. 45. Pórtico Eje 1 y Eje 5 ("Nonconforming transverse reinforcement")	91
Fig. 46. Pórtico Eje 2 y Eje 4. ("Nonconforming transverse reinforcement")	92
Fig. 47. Pórtico Eje A ("Nonconforming transverse reinforcement")	92
Fig. 48. Pórtico Eje B, Eje C y Eje D ("Nonconforming transverse reinforcement")	93
Fig. 49. Pórtico Eje 1 y Eje 5 ("Conforming transverse reinforcement")	94
Fig. 50. Pórtico Eje 2 y Eje 4 ("Conforming transverse reinforcement")	94
Fig. 51. Pórtico Eje A ("Conforming transverse reinforcement")	95
Fig. 52. Pórtico Eje B, Eje C y Eje D ("Conforming transverse reinforcement")	95
Fig. 53. Comparación de curva Fuerza-Desplazamiento	122
Fig. 54. Comparación de Diagrama Fuerza-Desplazamiento, columna D4 (70X50)	130
Fig. 55.Comparación Fuerza-Desplazamiento, columna D4 (50x70)	138
Fig. 56. Pórtico Eje 1 ("Nonconforming transverse reinforcement")	144
Fig. 57. Pórtico Eje 2 ("Nonconforming transverse reinforcement")	145
Fig. 58. Pórtico Eje 4 ("Nonconforming transverse reinforcement")	145
Fig. 59. Pórtico Eje 5 ("Nonconforming transverse reinforcement")	146
Fig. 60. Pórtico Eje A ("Nonconforming transverse reinforcement")	146
Fig. 61. Pórtico Eje B ("Nonconforming transverse reinforcement")	147
Fig. 62. Pórtico Eje C ("Nonconforming transverse reinforcement")	147
Fig. 63. Pórtico Eje D ("Nonconforming transverse reinforcement")	148
Fig. 64. Pórtico Eje 1 ("Conforming transverse reinforcement")	148
Fig. 65. Pórtico Eje 2 ("Conforming transverse reinforcement")	149
Fig. 66. Pórtico Eje 4 ("Conforming transverse reinforcement")	149
Fig. 67. Pórtico Eje 5 ("Conforming transverse reinforcement")	150
Fig. 68. Pórtico Eje A ("Conforming transverse reinforcement")	150
Fig. 69. Pórtico Eje B ("Conforming transverse reinforcement")	151
Fig. 70. Pórtico Eje C ("Conforming transverse reinforcement")	151
Fig. 71. Pórtico Eje D ("Conforming transverse reinforcement")	152

ÍNDICE DE TABLAS

Tabla 1. Valores del parámetro a, Aguiar R. (2007)	11
Tabla 2. Factor de redundancia en función de la ductilidad por curvatura	12
Tabla 3. Factores de reducción de redundancia. ATC-19 (1995)	12
Tabla 4. Coeficiente de reducción de respuesta estructural R (CEC-2007)	13
Tabla 5. Coeficiente de reducción de respuesta estructural R (NEC-11)	14
Tabla 6. Coeficientes de diseño y factores para fuerzas sísmicas (ASCE-7-05)	16
Tabla 7. Requisitos de resistencia de la ASTM. Nilson(1999)	33
Tabla 8. Factor de sobrecarga del elemento de soporte. NEC-11. Cap.1	50
Tabla 9. Comparación de Diagrama Momento- Curvatura entre cálculos manuales, hoja	de
cálculo, KSU-RV, SAP 2000.	51
Tabla 10. Comparación de Momento Curvatura entre cálculos manuales, Hoja de Cálcul	0,
KSU-RC, SAP 2000. Columna B4 (50x70)	55
Tabla 11. Comparación de Momento – Curvatura. Columna D4 (70X50)	56
Tabla 12. Comparación de Momento Curvatura. Columna D4 (50x70)	57
Tabla 13. Resultados de columnas en voladizo	58
Tabla 14. Resultados columnas doblemente empotrada	59
Tabla 15. Geometría de los pórticos.	62
Tabla 16. Detalle de columnas del edificio de hormigón armado en estudio	65
Tabla 17. Detalle de vigas del edificio de hormigón armado en estudio	66
Tabla 18. Diferencias entre primer caso y segundo caso	66
Tabla 19. Carga muerta aplicada a cada pórtico	74
Tabla 20.Tipo de suelo y factores de sitio Fa (NEC-11)	75
Tabla 21. Tipo de suelo y factores de sitio Fd (NEC-11)	75
Tabla 22. Tipo de suelo y factores del comportamiento inelástico del subsuelo Fs (NEC-1	1)
	75
Tabla 23. Valores del Factor de Modificación de Amortiguamiento. (ATC-40)	78
Tabla 24. Coeficiente de Reducción de desplazamiento, aceleración y velocidad. Newma	ark
& Hall (1982)	79
Tabla 25. Valores de amortiguamiento efectivo para pórticos "Nonconforming transver	se
reinforcement".	79
Tabla 26. Coeficientes de reducción del Espectro de Demanda de aceleración, velocidad	l y
desplazamiento. "Nonconforming transverse reinforcement"	80
Tabla 27. Valores de amortiguamiento efectivo para pórticos "Conforming transverse	
reinforcement".	81
Tabla 28. Coeficientes de reducción del Espectro de Demanda de aceleración, velocidad	l y
desplazamiento. " Conforming transverse reinforcement"	82
Tabla 29. Valores obtenidos del Factor R de ductilidad para estructura que no está	
adecuadamente confinada	83
Tabla 30. Valores obtenidos del Factor R de ductilidad para estructura adecuadamente	
confinada	84

Tabla 31. Resultados del factor de Sobre-resistencia para pórticos "Nonconforming
transverse reinforcement" 85
Tabla 32. Resultados del factor de Sobre-resistencia para pórticos "Conforming transverse
reinforcement"
Tabla 33. Resultados del Factor de Redundancia para pórticos "Nonconforming transverse
reinforcement"
Tabla 34. Resultados del Factor de Redundancia para pórticos "Conforming transverse
reinforcement"
Tabla 35. Resumen de los factores R calculados para pórticos "NonConforming transverse
reinforcement"
Tabla 36. Resumen de los factores R calculados para pórticos "Conforming transverse
reinforcement"

RESUMEN

Con el objetivo de disminuir el riesgo sísmico en nuestro país, surgió la necesidad de la creación de normas que establecen parámetros de diseño sismo-resistente. Uno de los parámetros más importantes es el Coeficiente de Reducción de Respuesta Estructural o Factor R, el cual es establecido en nuestro país por la Norma Ecuatoriana de Construcción (NEC-11). Dicho factor es utilizado para reducir la intensidad de las fuerzas sísmicas elásticas a fuerzas inelásticas aplicadas, con lo cual influye en el desempeño de la estructura ante un sismo severo, definiendo su capacidad de resistencia lateral.

El presente trabajo tiene como finalidad verificar el valor del Factor R propuesto por el NEC-11 para estructuras de pórticos de hormigón armado. Para lograr dicho objetivo, se ha realizado un Análisis No Lineal Estático (Pushover) de los pórticos de un edificio de 11 pisos ubicado en la ciudad de Salinas por medio del programa de elementos finitos SAP2000.

Se consideraron dos casos: el primer caso donde los elementos estructurales no cumplen con el confinamiento establecido por el NEC-11 y el segundo donde están adecuadamente confinados. Se obtuvo el Factor R de cada pórtico en función de tres variables: El Factor R de Ductilidad calculado mediante ecuaciones propuestas por Newmark & Hall (1982), el Factor R de Sobre-resistencia obtenido mediante el Método del Espectro de Capacidad y el Factor R de Redundancia que se obtuvo con la ayuda del SAP 2000.

Del análisis realizado se obtuvo que al diseñar los elementos estructurales con el confinamiento que determina el NEC-11, el Factor R promedio obtenido es igual a 7, por lo tanto se aproxima al valor propuesto en el capítulo 2 de dicha norma, el cual es R igual a 6. Por otro lado, para el caso de pórticos con elementos no adecuadamente confinado se obtuvo un Factor R aproximadamente igual a 3.

Palabras Claves: Factor R, Factor de Ductilidad, Factor de Sobre-resistencia, Factor de Redundancia, Método Espectro de Capacidad.

CAPÍTULO I

1.1. INTRODUCCIÓN

El Ecuador está ubicado en una zona de alto riesgo sísmico y la mayoría de edificaciones son vulnerables a sufrir daños severos ante un terremoto, ya que no han sido diseñadas utilizando un código de construcción que incorpore requerimientos mínimos para un diseño sismo-resistente.

Si el Ecuador sufriera el impacto de un sismo de alta intensidad, provocaría significantes daños en este tipo de estructuras, destrucción de ciudades, pérdidas económicas y de vidas humanas, una evidencia de lo que podría llegar a suceder es el sismo que afectó a Bahía de Caráquez el 4 de agosto de 1998 y el sismo de magnitud 6.1, el 18 de agosto de 1980 que afectó a la ciudad de Guayaquil.

Las zonas de mayor peligro sísmico en nuestro país son las ciudades del perfil costanero, seguidos de la Sierra y finalmente del Oriente. Con el objetivo de evitar pérdidas causadas por terremotos, surgió la necesidad de la creación de normas que regulen el diseño y construcción en nuestro país, estableciendo parámetros sismo-resistentes, logrando disminuir el riesgo sísmico.

A partir del 17 de julio del 2013 se aprobó la aplicación nacional de la Norma Ecuatoriana de Construcción NEC-11, la cual presenta parámetros más estrictos con respecto al código anterior CEC-02, siendo uno de los cambios más significativos, los valores propuestos del Factor de Reducción R.

El factor de reducción R es de mucha importancia para el diseño estructural, ya que es utilizado para reducir la intensidad de las fuerzas sísmicas elásticas a fuerzas inelásticas aplicadas, por lo tanto influye en el desempeño de la estructura ante un sismo severo, definiendo su capacidad de resistencia lateral.

Según Arroyo & Terán (2002) al permitir que la estructura incursione en el rango inelástico, aparecen daños estructurales al ser sometida a fuerzas sísmicas de alta intensidad, aunque no resulta en colapso, los daños pueden alcanzar elevados costos de rehabilitación, es por esto que se debe seleccionar un adecuado factor de reducción R.

Si el diseñador seleccionara valores de R muy altos, las fuerzas sísmicas utilizadas para el diseño serían muy bajas por la tanto las dimensiones de los elementos estructurales serían menores. Una inapropiada selección provocaría que el desempeño del edificio sea deficiente, las deformaciones podrían llegar a ser excesivas, presentando daños indeseables y elevados costos de reparación e inclusive el colapso.

La razón por la cual se divide la aceleración de un espectro elástico para el factor R, es porque la estructura logra disipar una parte de la fuerza sísmica mediante deformaciones e incursiones en el rango inelástico de los miembros estructurales. De esta manera, se obtienen menores fuerzas con las que se realizará el diseño.

Si se utilizara un espectro de diseño elástico, la estructura no sufriría ningún daño ante un evento sísmico severo, sin embargo, el costo de la edificación sería muy elevado, ya que los elementos estructurales tendrían grandes dimensiones.

La NEC-11 indica que, "El factor R implica una reducción de las fuerzas sísmicas de diseño, lo cual es permitido siempre que las estructuras y sus conexiones se diseñen para desarrollar un mecanismo de falla previsible y con adecuada ductilidad, donde el daño se concentre en secciones especialmente detalladas para funcionar como rótulas plásticas" (CAPÍTULO 2. p.57), dicha norma señala que el factor R depende de algunas variables como el tipo de estructura, tipo de suelo, período de vibración, factores de

2

ductilidad, sobre resistencia, redundancia y amortiguamiento, sin embargo no presenta métodos de cálculo de este factor.

La norma ecuatoriana de la construcción NEC-11, únicamente recomienda valores del factor de reducción R que varían dependiendo de la tipología de la estructura.

Vielma, Barbat & Oller (2006) indican que investigadores como Veletsos & Newmark (1960) han sugerido valores de R relacionados con valores de ductilidad y del período de la estructura. Además, señala que otros investigadores como Bertero V. (1996) propone que el factor de reducción R se lo obtiene mediante el producto de cuatro factores: factor de reducción por resistencia R_s , factor de reducción por ductilidad R_{μ} , factor de reducción por múltiples grados de libertad R_{VG} y el factor de reducción por redundancia, los que también deben ser analizados para la elaboración de un diseño estructural.

El análisis para la obtención del factor R que se determinará en la presente investigación, podría llegar a ser de valiosa ayuda para los diseñadores de estructuras, ya que se emitirán comentarios y recomendaciones para la correcta selección del factor.

1.2. OBJETIVOS

1.2.1 OBJETIVO GENERAL

Realizar un análisis no lineal de un pórtico o estructura de hormigón armado que ya haya sido diseñada, para poder determinar su capacidad de disipar energía, obtener valores reales del factor de reducción R y compararlos con los propuestos en la Norma Ecuatoriana de la Construcción NEC-11.

1.2. 2. OBJETIVOS ESPECÍFICOS

- Realizar un modelo matemático de una estructura de hormigón armado que ya haya sido diseñada, para realizar un análisis inelástico y obtener el factor R equivalente de este análisis.
- ✓ Comparar el factor R obtenido con la norma ecuatoriana de construcción NEC-11
- ✓ Determinar si el factor R propuesto para el diseño de la estructura existente es el adecuado.
- ✓ Dar recomendaciones y conclusiones de su correcta selección.

CAPÍTULO II

2. MARCO TEÓRICO

2. 1. FACTOR DE REDUCCIÓN DE FUERZAS SÍSMICAS R

El desempeño de una estructura y capacidad de resistencia lateral dependerá de las fuerzas sísmicas que se hayan utilizado para realizar su diseño. El factor R será empleado para reducir la intensidad de las fuerzas sísmicas elásticas a fuerzas inelásticas aplicadas.

Cuando una estructura es sometida a altas fuerzas sísmicas, se logra disipar una parte de estas fuerzas mediante deformaciones e incursiones en el rango inelástico, presentándose de esta manera daños estructurales, aunque no resulte en colapso. La gravedad de los daños que se originen dependerá del valor del factor R seleccionado, ya que al dividir la aceleración de un espectro elástico para este factor, se tendrán menores fuerzas laterales con las que se diseñará.

Si se llegara a subestimar el valor del factor R, se podrían presentar daños irreparables o costos de reparación muy elevados, es por esto que la estructura debe tener una ductilidad adecuada para que los miembros logren disipar energía mediante deformaciones inelásticas.

Aguiar R. (2007) indica que "Los espectros de diseño, prescritos en las normativas sísmicas tienen un período de retorno de 475 años, cuya probabilidad de ocurrencia es muy baja durante la vida útil de la estructura. Por este motivo, es que se diseña pensando que la estructura va a sufrir daño ante el espectro de diseño pero no va a colapsar, ya que la misión fundamental de todo profesional es salvar vidas" (p.2).

2. 2. ESTUDIOS BASADOS EN LA OBTENCIÓN DEL FACTOR DE REDUCCIÓN SÍSMICO R

Existen varias investigaciones realizadas para cuantificar el factor R y según Vielma, Barbat & Oller (2006), la adopción de los factores de reducción se realizó a partir de los valores propuestos por Veletsos & Newmark (1960), que los relaciona con la ductilidad y período de una estructura. Basándose en los principales criterios de igual desplazamiento e igual energía absorbida, planteó:

(2. 1)

R =1	Para T=0
R= μ	Para el rango de períodos cortos
$R = \sqrt{2\mu - 1}$	Para el rango de períodos moderados
R= μ	Para el rango de períodos intermedios

Donde:

R: Factor de reducción.

 μ : Ductilidad

T: Período de la estructura

Este método aún es utilizado en códigos de diseño sismo-resistentes actuales.

2.2. 1. Newmark & Hall (1973)

Las investigaciones realizadas por Newmark & Hall (1973) sirvieron para la construcción de un espectro inelástico a partir de un espectro elástico, en donde se propuso:

Fig. 1. Valores del Factor R propuestos por Newmark & Hall (1973). Miranda E & Bertero V (1994)

(2. 2)

$$\begin{aligned} R_{\mu} &= 1 & 0 \leq T \leq \frac{T_{1}}{10} \\ R_{\mu} &= \sqrt{2\mu - 1} \left[\frac{T_{1}}{4T} \right]^{2.531 \log \left[\frac{1}{\sqrt{2\mu - 1}} \right]} & \frac{T_{1}}{10} \leq T \leq \frac{T_{1}}{4} \\ R_{\mu} &= \sqrt{2\mu - 1} & \frac{T_{1}}{4} \leq T \leq T_{1}' \\ R_{\mu} &= \frac{T\mu}{T_{1}} & T_{1}' \leq T \leq T_{1} \\ R_{\mu} &= \mu & T_{1} \leq T \leq T_{2} \\ R_{\mu} &= \mu & T_{2} \leq T \leq 10 \end{aligned}$$

Las regiones espectrales están limitadas por:

(2. 3)

$$T_{1} = 2\pi \frac{\propto_{v} V}{\propto_{a} A}$$
$$T_{1}' = T_{1} \frac{\mu}{\sqrt{2\mu - 1}}$$

$$T_2 = 2\pi \frac{\alpha_d D}{\alpha_v V}$$

Donde:

A,*V*,*D*: Máximos valores de aceleración, velocidad y desplazamientos del terreno.

 $\propto_a, \propto_v, \propto_d$: Factores de amplificación

Newmark & Hall (1973) recomienda valores de $\propto_a = 2.6$, $\propto_v = 1.9$, $\propto_d = 1.4$, para un 5% de amortiguamiento.

 $\frac{v}{A}$ = 120 cm/s/g para suelos firmes.

 $\frac{V}{A} = 80 \ y \ 90 \ \text{cm/s/g}$ para registros en roca.

 $\frac{AD}{V} = 6$ Constante para todo tipo de suelo.

 $\mu = \frac{\Delta_u}{\Delta_v}$ Ductilidad de desplazamiento donde: Δ_u corresponde al

desplazamiento último y Δ_y al desplazamiento en el estado de fluencia.

2.2. 2. Newmark & Hall (1982)

Una de las investigaciones de mayor importancia es la de Newmark & Hall (1982), donde calcula el factor R de ductilidad en función del período natural de la estructura:

$$(2.4)$$

$$R_{\mu} = 1$$

$$T < T_{a} = \frac{1}{33} s$$

$$R_{\mu} = (2\mu - 1)^{\beta}$$

$$\frac{1}{33} \leq T \leq T_{b} = 0.125 s$$

$$R_{\mu} = \sqrt{2\mu - 1}$$

$$T_{b} \leq T \leq T_{c}'$$

$$T_{c} < T < T_{c}$$

$$R_{\mu} = \mu$$

$$T \geq T_{c}$$

$$\boldsymbol{\beta} = \frac{\log\left(\frac{T}{T_a}\right)}{2\log\left(\frac{T_b}{T_a}\right)}$$
(2.5)

$$T_{c}' = \frac{\sqrt{2\mu - 1}}{\mu} T_{c}$$
 (2.6)

 T_c = Período en el cual la aceleración espectral deja de ser constante y empieza la zona descendente.

2.2. 3. Witthaker A. (1987)

Se propone que el factor de reducción es el producto de tres factores:

$$R = R_S R_{\mu} R_{\xi} \tag{2.7}$$

Donde:

R_s: Factor de reducción por resistencia.

 R_{μ} : Factor de reducción por ductilidad.

 R_{ξ} : Factor de reducción por amortiguamiento, el cual se obtiene a partir de las características dinámicas de la estructura, representadas por el período fundamental

$$R_S = \frac{V_u}{V_b} \tag{2.8}$$

 V_u : Cortante basal último.

 V_b : Cortante basal de diseño.

$$R_{\mu} = \frac{V_e}{V_u} \tag{2.9}$$

Ve: Cortante basal elástico.

2.2. 4. ATC-19 (1995)

Propone que el factor de reducción R está compuesto por tres factores y considera la disipación de energía por comportamiento no lineal para un sistema de un grado de libertad.

$$\boldsymbol{R} = \boldsymbol{R}_{\boldsymbol{\mu}} \, \boldsymbol{R}_{\,\boldsymbol{\Omega}} \, \boldsymbol{R}_{\,\boldsymbol{R}} \tag{2.10}$$

Donde:

- R_{μ} : Factor de resistencia por ductilidad.
- R_{Ω} : Factor de sobre-resistencia.
- $R_{\rm R}$: Factor de redundancia.

Fig. 2. Curva de capacidad sísmica y factores R_{μ} y R_{Ω} . Mwafy y Elnashai (2002)

En la Fig. 2 se muestra una línea entrecortada que representa el análisis elástico, relacionando el cortante basal con el desplazamiento lateral máximo de la estructura, aplicando cargas monotónicas crecientes en cada piso. La curva continua considera un análisis no lineal en donde la rigidez de la estructura va cambiando.

De la Fig. 2, se define el factor de reducción por ductilidad R_{μ} y el factor de reducción por sobre-resistencia R_{Ω}

$$R_{\mu} = \frac{V_e}{V_y} \tag{2.11}$$

Ve: Cortante basal elástico

 V_{y} : Cortante de fluencia.

$$\boldsymbol{R}_{\Omega} = \frac{\boldsymbol{V}_{y}}{\boldsymbol{V}_{D}} \tag{2.12}$$

V_D: Cortante de diseño

2.2. 5. Aguiar R. (2007)

Aguiar R. (2007) siguiendo los lineamientos del ATC-19 (1995), obtuvo los tres componentes, Factor R de Ductilidad, Factor R de Sobre-resistencia y Factor R de redundancia, de la siguiente manera:

✓ Factor R de ductilidad (R_{μ})

$$R_{\mu} = 1 + (\mu - 1) \left[\frac{a T (1 - 0.165 \,\mu)}{a T (1 - 0.165 \,\mu) + 4900} \right]$$
(2.13)

a: Depende del tipo de suelo y está definido en la Tabla 1 para los cuatro perfiles de suelo que presenta el CEC-2000

Variable	Suelo S1	Suelo S2	Suelo S3	Suelo S4
а	100500	91000	73600	38900

Tabla 1. Valores del parámetro a, Aguiar R. (2007)

 \checkmark Factor R de sobre-resistencia (R_{Ω})

$$R_{\Omega} = \frac{V_U}{V_D} \tag{2.14}$$

Vu: Cortante basal último

V_D: Cortante basal de diseño

El cortante basal último V_U será calculado a partir de la curva Fuerza-Desplazamiento. El cortante basal de diseño se lo obtiene a partir del Método del Espectro de Capacidad.

El método para obtener el cortante basal de diseño se encuentra en el Capítulo V.

\checkmark Factor R de redundancia ($R_{\rm R}$)

Aguiar R. (2007) propone una ecuación para hallar el factor de redundancia en función del período de la estructura:

$$R_{\rm R} = -2.99 \, T^3 + 6.54 \, T^2 - 3.26 \, T + 1.30 \tag{2.15}$$

Además, presenta la siguiente tabla para hallar el factor de redundancia en función de la ductilidad por curvatura.

Ductilidad	Ecuación	Error
promedio de		
Vigas	$R_{\rm R} = \exp(-0.001089\mu_{\varphi})^2$	10 %
Columnas	$R_{\rm R} = 1.372 + 0.00515 \sqrt{\mu_{\varphi}} \log(\mu_{\varphi}) - 764273.97 \exp(-\mu_{\varphi})$	6%

Tabla 2. Factor de redundancia en función de la ductilidad por curvatura

(Moses, 1974, citado por Daza-Duarte) señala que "La redundancia tiene mucha relación con la cantidad de líneas verticales de resistencia sísmica (ejes de columnas) y principalmente con la cantidad de rótulas plásticas requeridas para formar el mecanismo de colapso de la estructura"

Líneas resistentes verticales	Factor de redundancia
2	0.71
3	0.86
4	1.00

 Tabla
 3. Factores de reducción de redundancia. ATC-19 (1995)

2. 3. VALORES DEL FACTOR R PROPUESTOS POR CÓDIGOS

Los códigos sismo-resistentes realizados en el Ecuador recomiendan factores de reducción R que varían de acuerdo al tipo de estructura. Estos códigos no presentan ningún análisis de las diferentes variables que implica el factor, las cuales pueden ser: sobre-resistencia, ductilidad, amortiguamiento, tipo de estructura, tipo de suelo, período de vibración, redundancia.

2.3. 1. Código Ecuatoriano de la Construcción (CEC-2007)

Los valores propuestos por el Código Ecuatoriano de la Construcción (CEC-2007) se muestran en la siguiente Tabla.

Sistema estructural	R
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas descolgadas o de acero laminado en caliente, con muros estructurales de hormigón armado (sistemas duales).	12
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas descolgadas o de acero laminado en caliente.	10
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas banda y muros estructurales de hormigón armado (sistemas duales).	10
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas descolgadas y diagonales rigidizadoras.*	10
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas banda y diagonales rigidizadoras. *	9
Sistemas de pórticos espaciales sismo-resistentes de hormigón armado con vigas banda.	8
Estructuras de acero con elementos armados de placas o con elementos de acero conformados en frío. Estructura de aluminio.	7
Estructuras de madera.	7
Estructura de mampostería reforzada o confinada.	5
Estructuras con muros portantes de tierra reforzada o confinada.	3

* Cuando se utilizan diagonales, se debe verificar que las elementos en tensión cedan antes que los elementos en comprensión.

Tabla 4. Coeficiente de reducción de respuesta estructural R (CEC-2007)

2.3. 2. Norma Ecuatoriana de Construcción (NEC-11)

La Norma Ecuatoriana de la Construcción (NEC-11), divide al tipo de estructura en dos grupos, los sistemas estructurales dúctiles y los sistemas estructurales de ductilidad limitada. La norma indica que es permitido reducir

las fuerzas sísmicas de diseño usando el factor R, únicamente cuando la estructura y sus conexiones desarrollen un mecanismo de falla y una adecuada ductilidad.

Los valores del Factor R propuestos por la NEC-11 se muestran en la siguiente Tabla:

Valores del coeficiente de reducción de respuesta estructural R, Sistemas Estructurales Dúctiles	
Sistemas Duales	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas, con muros estructurales	
de hormigón armado o con diagonales rigidizadoras, sean de hormigón o acero laminado en caliente.	7
Pórticos de acero laminado en caliente con diagonales rigidizadoras (excéntricas o concéntricas) o con muros	
estructurales de hormigón armado.	7
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente con diagonales rigidizadoras (excéntricas o concéntricas).	7
Pórticos especiales sismo resistentes, de hormigón armado con vigas banda, con muros estructurales de	
hormigón armado o con diagonales rigidizadoras.	6
Pórticos resistentes a momentos	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	6
Pórticos especiales sismo resistentes, de acero laminado en caliente o con elementos armados de placas.	6
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente.	6
Otros sistemas estructurales para edificaciones	
Sistemas de muros estructurales dúctiles de hormigón armado.	5
Pórticos especiales sismo resistentes de hormigón armado con vigas banda.	5
Valores del coeficiente de reducción de respuesta estructural R, Sistemas Estructurales de Ductilidad Limit	ada
Pórticos resistentes a momento	-
Hormigón Armado con secciones de dimensión menor a la especificada en el capitulo 4, limitados a viviendas	
de hasta 2 pisos con luces de hasta 4 metros.	3
Estructuras de acero conformado en frío, aluminio, madera, limitados a 2 pisos.	3
Muros estructurales portantes	
Mampostería no reforzada, limitada a un piso.	1
Mampostería reforzada, limitada a 2 pisos.	3
Mampostería confinada, limitada a 2 pisos.	3
Muros de hormigón armado, limitados a 4 pisos.	3

Tabla 5. Coeficiente de reducción de respuesta estructural R (NEC-11)

2.3. 3. American Society of Civil Engineers (ASCE-7-05)

El Código ASCE-7-05 de Estados Unidos, determina factores de reducción de fuerzas sísmicas, tales como, Factor de reducción R, Factor de amortiguamiento y factor por desplazamiento. Este código clasifica el tipo de estructuras de diversas maneras, los pórticos resistentes a momentos se clasifican en ordinarios, intermedios y especiales:

		ASCE 7 Section Where Detailing Requirements	Response Modification Coefficient	Overstrength	Deflection	Structural System Limitations Including Structural Height, h _n (ft) Limits ^c Seismic Design Category				
	Seismic Force-Resisting System	Are Specified	Rª	Factor, Ω_0^{ℓ}	Factor, C	в	С	\mathbf{D}^d	\mathbf{E}^{d}	\mathbf{F}^{ϵ}
C.	MOMENT-RESISTING FRAME SYSTEMS									
1.	Steel special moment frames	14.1 and 12.2.5.5	8	3	51/2	NL	NL	NL	NL	NL
2.	Steel special truss moment frames	14.1	7	3	51/2	NL	NL	160	100	NP
3.	Steel intermediate moment frames	12.2.5.7 and 14.1	41/2	3	4	NL	NL	35*	NP^{\dagger}	NP ^h
4.	Steel ordinary moment frames	12.2.5.6 and 14.1	31/2	3	3	NL	NL	NP	NP	NP
5.	Special reinforced concrete moment frames"	12.2.5.5 and 14.2	8	3	51/2	NL	NL	NL	NL	NL
6.	Intermediate reinforced concrete moment frames	14.2	5	3	41/2	NL	NL	NP	NP	NP
7.	Ordinary reinforced concrete moment frames	14.2	3	3	21/2	NL	NP	NP	NP	NP
8.	Steel and concrete composite special moment frames	12.2.5.5 and 14.3	8	3	51/2	NL	NL	NL	NL	NL
9.	Steel and concrete composite intermediate moment frames	14.3	5	3	41/2	NL	NL	NP	NP	NP
10.	Steel and concrete composite partially restrained moment frames	14.3	6	3	51/2	160	160	100	NP	NP
11.	Steel and concrete composite ordinary moment frames	14.3	3	3	21/2	NL	NP	NP	NP	NP
12.	Cold-formed steel-special bolted moment frame [®]	14.1	31/2	3°	31/2	35	35	35	35	35
D.	DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES	12.2.5.1								
1.	Steel eccentrically braced frames	14.1	8	21/2	4	NL	NL	NL	NL	NL
2.	Steel special concentrically braced frames	14.1	7	21/2	51/2	NL	NL	NL	NL	NL
3.	Special reinforced concrete shear walls l	14.2	7	21/2	51/2	NL	NL	NL	NL	NL
4.	Ordinary reinforced concrete shear walls'	14.2	6	21/2	5	NL	NL	NP	NP	NP
5.	Steel and concrete composite eccentrically braced frames	14.3	8	21/2	4	NL	NL	NL	NL	NL
6.	Steel and concrete composite special concentrically braced frames	14.3	6	21/2	5	NL	NL	NL	NL	NL

	Seismic Force-Resisting System	ASCE 7 Section Where Detailing Requirements Are Specified	Response Modification Coefficient, R ^e	Overstrength Factor, Ω ₀ ^r	Deflection Amplification Factor, C ₀ ^b	Structural System Limitations Including Structural Height, h _s (ft) Limits ^c Seismic Design Category				
						в	С	\mathbf{D}^d	\mathbf{E}^{d}	F
G.	CANTILEVERED COLUMN SYSTEMS DETAILED TO CONFORM TO THE REQUIREMENTS FOR:	12.2.5.2								
1.	Steel special cantilever column systems	14.1	21/2	1%	21/2	35	35	35	35	35
2.	Steel ordinary cantilever column systems	14.1	11/4	154	1%	35	35	NP	NP	NP
3.	Special reinforced concrete moment frames ^e	12.2.5.5 and 14.2	21/2	1%	21/2	35	35	35	35	35
4.	Intermediate reinforced concrete moment frames	14.2	11/2	1%	11/2	35	35	NP	NP	NP
5.	Ordinary reinforced concrete moment frames	14.2	1	1%	1	35	NP	NP	NP	NP
6.	Timber frames	14.5	11/2	11/2	11/2	35	35	35	NP	NP
H.	STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE, EXCLUDING CANTILEVER COLUMN SYSTEMS	14.1	3	3	3	NL	NL	NP	NP	NP

'Response modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not an allowable stress level.

Deflection amplification factor, Co for use in Sections 12.8.6, 12.8.7, and 12.9.2.

'NL = Not Limited and NP = Not Permitted. For metric units use 30.5 m for 100 ft and use 48.8 m for 160 ft.

'See Section 12.2.5.4 for a description of seismic force-resisting systems limited to buildings with a structural height, he, of 240 ft (73.2 m) or less.

See Section 12.2.5.4 for seismic force-resisting systems limited to buildings with a structural height, h_a, of 160 ft (48.8 m) or less.

Ordinary moment frame is permitted to be used in lieu of intermediate moment frame for Seismic Design Categories B or C.

Where the tabulated value of the overstrength factor, Ω_{cs} is greater than or equal to $2\psi_{s}$, Ω_{c} is permitted to be reduced by subtracting the value of 1/2 for structures with flexible disphragms.

See Section 12.2.5.7 for limitations in structures assigned to Seismic Design Categories D, E, or F.

See Section 12.2.5.6 for limitations in structures assigned to Seismic Design Categories D, E, or F.

Steel ordinary concentrically braced frames are permitted in single-story buildings up to a structural height, h_m of 60 ft (18.3 m) where the dead load of the roof does not exceed 20 psf

(0.96 kN/m2) and in penthouse structures.

An increase in structural height, he, to 45 ft (13.7 m) is permitted for single story storage warehouse facilities.

In Section 2.2 of ACI 318. A shear wall is defined as a structural wall.

"In Section 2.2 of ACI 318. The definition of "special structural wall" includes precast and cast-in-place construction.

"In Section 2.2 of ACI 318. The definition of "special moment frame" includes precast and cast-in-place construction.

"Alternately, the seismic load effect with overstrength, E_{nt}, is permitted to be based on the expected strength determined in accordance with AISI S110. "Cold-formed steel – special bolted moment frames shall be limited to one-story in height in accordance with AISI S110.

Tabla 6. Coeficientes de diseño y factores para fuerzas sísmicas (ASCE-7-05)

CAPÍTULO III

3. HERRAMIENTAS NECESARIAS PARA EL CÁLCULO DEL COMPORTAMIENTO NO-LINEAL DE ESTRUCTURAS DE HORMIGÓN ARMADO POR MEDIO DEL MÉTODO PUSHOVER

3.1. DUCTILIDAD

Park & Paulay (1978) indica que la ductilidad es la capacidad que posee una estructura de admitir ciertas deformaciones una vez que ha alcanzado el esfuerzo máximo. En el diseño sismo-resistente se deben evitar que ocurran fallas frágiles para lograr salvar vidas, ya que una falla frágil se presenta de manera inadvertida produciéndose un colapso brusco y repentino de la estructura.

Fig. 3. Comportamiento de la curva carga-deflexión de un miembro a flexión (Park R & Paulay (1978))

Es de gran importancia que en zonas expuestas a fuerzas sísmicas de alta intensidad se le otorgue a la estructura la ductilidad adecuada, es decir la capacidad de disipar energía mediante deformaciones inelásticas. Se debe lograr la formación de suficientes articulaciones plásticas antes de alcanzar la carga última.

Para que los elementos estructurales posean una adecuada ductilidad, es necesario que el diseñador tome en cuenta los requisitos de diseño expuestos en el ACI 318-11, tales como, una correcta cuantía de refuerzo longitudinal, no exceder los límites de refuerzo de tensión, calcular la cantidad adecuada de refuerzo de compresión y suficiente refuerzo transversal para evitar fallas de corte.

Si se excedieran los límites de refuerzo en tensión se puede llegar a producir un aplastamiento del hormigón en compresión antes que el acero en tensión fluya, por lo tanto disminuye la ductilidad.

Otro factor importante para evitar el colapso de una estructura, es considerar los parámetros de columna fuerte, viga débil, logrando así una mejor disipación de energía. Se requiere que las rótulas plásticas se formen en las vigas, es decir en elementos que no afecten a la estabilidad de la estructura.

Según Park & Paulay (1978), La distribución de la fuerza axial, la fuerza cortante y el momento flector depende de la ductilidad, para lo cual es necesario el estudio de las curvas esfuerzo-deformación de los materiales y posteriormente de la relación momento-curvatura.

3. 2. COMPORTAMIENTO DEL HORMIGÓN

3.2. 1 Hormigón no confinado

Para obtener la resistencia a compresión del hormigón f'_{co} , se realizan ensayos en cilindros, aplicando cargas longitudinalmente hasta alcanzar la deformación máxima. El hormigón alcanza su resistencia a los 28 días, sin embargo, la resistencia a la tracción es muy baja, por lo que generalmente se desprecia al calcular la resistencia del hormigón armado. Se puede suponer que el módulo de elasticidad en compresión será igual al de tensión. Al aparecer la primera grieta en el hormigón este pierde su resistencia a la tracción, lo cual incrementará el ancho de las grietas.

La medición directa de la resistencia a tensión es de gran dificultad debido a los problemas que existen para sujetar los especímenes durante los ensayos, como una solución a estos problemas, se ha optado medir la resistencia de manera indirecta mediante la prueba del módulo de ruptura y la prueba radial del cilindro. Nilson (1999).

Según Park & Paulay (1978), un hormigón de mayor resistencia será menos dúctil que los de menor resistencia, esto se lo puede apreciar en la Fig. 4, en donde se muestran curvas de esfuerzo-deformación obtenidas de pruebas realizadas a cilindros de hormigón de varias resistencias, aplicando cargas de compresión uniaxial. Las curvas correspondientes al hormigón de alta resistencia, presenta un pico más pronunciado; mientras que las de menor resistencia, la curva se vuelve aproximadamente plana. El esfuerzo máximo se presenta a una deformación de 0.002.

Fig. 4. Curvas esfuerzo-deformación para cilindros de concreto cargados a compresión uniaxial. Priestley & Paulay (1992)

3.2. 2. Hormigón confinado

La aplicación de una carga de compresión triaxial al hormigón, aumenta considerablemente su resistencia y ductilidad. Por lo que se ha logrado el confinamiento del hormigón mediante la utilización de refuerzos transversales, en forma rectangular o de hélice. El confinamiento efectivo empieza cuando se produce un agrietamiento progresivo interno al aplicar esfuerzos de compresión que se aproximan a la resistencia máxima, de esta manera el hormigón se apoya contra el refuerzo transversal y empieza el confinamiento.

El refuerzo transversal en forma de hélice le confiere al hormigón una mayor ductilidad que los de forma rectangular también llamados estribos. Los de hélice le proporcionan al hormigón un confinamiento alrededor de todo el perímetro del cilindro, mientras que los estribos otorgan el confinamiento sólo en las esquinas, quedando espacios sin confinar. Priestley, M., & Paulay, T. (1992)

La diferencia entre los refuerzos transversales se la puede apreciar en la siguiente figura:

Fig. 5. Confinamiento por a) estribos, b) hélice. Park R. & Paulay (1978)

Para proporcionarle un mejor confinamiento al hormigón, se debe disminuir el espacio entre los refuerzos transversales, es decir que a menor espacio
entre estribos se obtendrá un mejor confinamiento, por lo tanto, mejor ductilidad y resistencia.

La Fig. 6. muestra el efecto que se produce variando el espaciamiento entre los refuerzos transversales.

Fig. 6. Efecto del espaciamiento del acero transversal. Park R. & Paulay (1978).

La contribución del recubrimiento debe ser ignorado cuando se tienen cuantías altas de acero a grandes deformaciones, ya que el hormigón que queda fuera del refuerzo transversal comienza a descascararse al alcanzar la resistencia no confinada, debido a que la presencia de una cuantía alta de refuerzo transversal crea una superficie de debilidad entre el núcleo y el recubrimiento.

3. 3. MODELOS DE CURVAS ESFUERZO-DEFORMACIÓN DEL HORMIGÓN.

Es de gran importancia el estudio de las propiedades mecánicas de los materiales, las cuales se las puede obtener mediante las curvas de esfuerzodeformación. Algunos investigadores han realizado varios modelos analíticos de estas curvas, tanto para el concreto no confinado y confinado; a continuación se muestran algunos de los estudios realizados.

3.3. 1. Modelo de hormigón no confinado.

3.3.1. 1 Hognestad (1951)

Es aplicable para secciones circulares, rectangulares o cuadradas.

La curva está definida por dos ramas:

Fig. 7. Curva esfuerzo-deformación del hormigón a compresión. Hognestad (1951)

Primera rama

La curva en la primera rama consiste en una parábola de segundo grado hasta alcanzar la resistencia máxima.

$$0 \leq \varepsilon_C \leq \varepsilon_0$$

$$f_{c} = f'_{c} \left[\frac{2\varepsilon_{0}}{\varepsilon_{0}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{0}}\right)^{2} \right]$$
(3.1)

Segunda rama

Se representa mediante una recta con pendiente \emptyset . La deformación unitaria última ε_{cu} se considera igual a 0.0038

$$\varepsilon_0 = \frac{2f'_c}{E_c} \tag{3.2}$$

$$\emptyset = \frac{3f'_c}{20(\varepsilon_{cu} - \varepsilon_0)}$$
(3.3)

3.3. 2. Modelo de hormigón confinado.

3.3.2. 1. Kent & Park (1971)

Modelo aplicable únicamente a secciones cuadradas y rectangulares, considera que el confinamiento no aporta ningún efecto a la resistencia.

La curva está formada por tres ramas:

Fig. 8. Curva de esfuerzo-deformación para hormigón confinado por estribos. Kent & Park (1971)

Primera rama (Región AB):

La curva en la primera región AB se trata de una parábola de segundo grado, aún no se presenta el efecto de confinamiento.

 $\varepsilon_C \leq 0.002$

$$f_c = f'_c \left[\frac{2\varepsilon_c}{0.002} - \left(\frac{\varepsilon_c}{0.002} \right)^2 \right]$$
(3.4)

Segunda rama (Región BC):

$$0.002 \le \varepsilon_c \le \varepsilon_{20c}$$

$$f_c = f'_c [1 - Z(\varepsilon_c - 0.002)]$$
(3.5)

Donde

$$Z = \frac{0.5}{\varepsilon_{50u} + \varepsilon_{50h} - 0.002}$$
(3.6)

$$\varepsilon_{50u} = \frac{3+0.002 f'_c}{f'_c - 1000}$$
(3.7)

$$\varepsilon_{50h} = \frac{3}{4} \rho_s \sqrt{\frac{b''}{s_h}} \tag{3.8}$$

Tercera rama (Región CD):

La ecuación que define esta región toma en cuenta la habilidad de concreto de soportar esfuerzos a deformaciones altas.

 $\varepsilon_c \geq \varepsilon_{20c}$

$$f_c = 0.20 f'_c \tag{3.9}$$

 f'_c : Resistencia del cilindro de hormigón en lb/plg^2

 ε_c : Deformación unitaria del concreto

 ε_0 : Deformación unitaria en la resistencia máxima, en este caso es 0.002

 ε_{20c} : Deformación unitaria asociada al 0.20 f'_c

b'': Ancho del núcleo confinado medido al exterior de los aros.

S_h: Separación entre los estribos.

 ρ_s : Relación entre el volumen de estribos y el volumen del concreto confinado.

Z: Define la pendiente de la rama descendente recta.

 ε_{50u} : Toma en cuenta el efecto de la resistencia del concreto en la pendiente de la rama recta descendente del concreto no confinado.

 ε_{50h} : La ductilidad adicional debida a los refuerzos rectangulares

3.3.2. 2. Park modificado (1982)

El modelo de Park modificado si considera que el confinamiento por refuerzos transversales aumenta la resistencia a la compresión del hormigón.

En el modelo de Park modificado se usan las mismas ecuaciones propuestas en el modelo de Kent & Park, con la diferencia que ahora las variables f'_c y ε_0 , están multiplicadas por un factor k, que representa el incremento de las deformaciones y de la resistencia.

Fig. 9. Curva de esfuerzo-deformación de Park Modificado.

Primera rama (Región AB):

 $\varepsilon_C \leq k \varepsilon_0$

$$f_{c} = k f'_{c} \left[\frac{2\varepsilon_{c}}{k\varepsilon_{0}} - \left(\frac{\varepsilon_{c}}{k\varepsilon_{0}} \right)^{2} \right]$$
(3.10)

Segunda rama (Región BC):

 $k \ \varepsilon_0 \leq \varepsilon_c \leq \varepsilon_{20c}$

$$f_c = k f'_c [1 - Z(\varepsilon_c - k\varepsilon_0)]$$
(3. 11)

Donde

$$Z = \frac{0.5}{\varepsilon_{50u} + \varepsilon_{50h} - k \varepsilon_0}$$
(3.12)

$$\varepsilon_{50u} = \frac{3 + \varepsilon_0 f'_c}{f'_c - 1000}$$
(3.13)

$$\varepsilon_{50h} = \frac{3}{4} \rho_s \sqrt{\frac{b''}{s_h}}$$
 (3.14)

$$k = 1 + \frac{\rho_s f_y}{f_c} \tag{3.15}$$

Tercera rama (Región CD):

 $\varepsilon_c \geq \varepsilon_{20c}$

$$f_c = 0.20 f'_c$$
 (3.16)

3.3.2. 3. Mander (1988)

Mander (1988) realizó un modelo aplicable para secciones circulares, rectangulares o cuadradas y considera que el confinamiento por refuerzos transversales aumenta la capacidad de resistencia a la compresión del hormigón y su capacidad para deformarse.

Se alcanza la deformación unitaria última cuando se rompe el refuerzo transversal y pierda la capacidad de confinamiento.

La curva de Esfuerzo-Deformación se define mediante las siguientes ecuaciones:

Fig. 10. Curva esfuerzo-deformación usando el Modelo de Mander (1988)

$$f_c = \frac{x r f_{cc}}{r - 1 + x^r}$$
(3.17)

$$x = \frac{\varepsilon_c}{\varepsilon_{cc}} \tag{3.18}$$

$$r = \frac{E_c}{E_c - \varepsilon_{sec}}$$
(3. 19)

$$\varepsilon_{cc} = \varepsilon_{co\left[1+5\left(\frac{f_{cc}}{f_{c0}}-1\right)\right]}$$
(3.20)

$$E_c = 5000\sqrt{f'_{c0}} MPa \qquad (3.21)$$

$$E_{sec} = \frac{f'_{cc}}{\varepsilon_{cc}} \tag{3.22}$$

Para secciones rectangulares o cuadradas:

$$f'_{cc} = K f'_{co}$$
 (3. 23)

$$f_{lx} = \frac{A_{sx}}{sb_{cy}} k_e f_y \tag{3.24}$$

$$f_{ly} = \frac{A_{sy}}{sb_{cx}} k_e f_y \tag{3.25}$$

$$k_{e} = \frac{\left(1 - \sum_{i=1}^{n} \frac{wi^{2}}{6b_{cx}b_{cy}}\right) \left(1 - \frac{s'}{2b_{cx}}\right) \left(1 - \frac{s'}{2b_{cy}}\right)}{1 - \rho_{cc}}$$
(3.26)

$$A_{e} = \left(b_{cx}b_{cy} - \sum_{i=1}^{n} \frac{wi^{2}}{6}\right) \left(1 - \frac{s'}{2b_{cx}}\right) \left(1 - \frac{s'}{2b_{cy}}\right)$$
(3.27)

Donde:

wi: Distancia libre entre varillas longitudinales adyacentes.

 f'_{cc} : Resistencia a la compresión confinada.

 f'_{co} : Resistencia a la compresión no confinada.

- ε_c : Deformación unitaria del hormigón.
- ε_{cu} : Deformación unitaria última.

- ε_{co} : Deformación unitaria en f'_{co} , puede ser asumido como 0.002
- ε_{cc} : Deformación unitaria del hormigón simple en f'_{cc}
- *E_c*: Módulo de elasticidad del hormigón no confinado.
- *E_{sec}*: Módulo secante del hormigón confinado.
- f_y : Esfuerzo de fluencia del acero de refuerzo transversal
- *K*: Factor de esfuerzo confinado.
- A_{sx} : Área del refuerzo transversal paralelo al eje "x"
- A_{sy} : Área del refuerzo transversal paralelo al eje "y"
- s': Separación entre los estribos en paños inferiores.
- s: Separación entre los estribos en paños exteriores.

Fig. 11. Gráfica para obtener *K*, factor de esfuerzo confinado. Mander (1988)

Ecuaciones del Modelo de Mander para secciones circulares:

$$f'_{cc} = f'_{co} \left(2.254 \sqrt{1 + \frac{7.94f_{le}}{f'_{co}}} - \frac{2f_{le}}{f'_{co}} - 1.254 \right) MPa$$
(3.28)

$$f_{le} = \frac{1}{2} k_e \rho_s f_y$$
 (3.29)

$$\boldsymbol{\rho}_s = \frac{4 A_{sp}}{s \, d_s} \tag{3.30}$$

$$k_{ec} = \frac{\left(1 - \frac{s'}{2 \, d_s}\right)^2}{1 - \rho_{cc}} \tag{3.31}$$

$$k_{es} = \frac{1 - \frac{s'}{2 \, d_s}}{1 - \rho_{cc}} \tag{3.32}$$

Donde

 A_{sp} : Área de refuerzo transversal.

 ρ_s : Relación del volumen acero confinante entre el volumen de hormigón confinado.

 ρ_{cc} : Relación del área de acero longitudinal y área de hormigón confinado.

d_s: Diámetro de los estribos

 k_e : Factor de confinamiento efectivo.

 k_{ec} , k_{ec} : Factor de confinamiento efectivo para secciones confinadas con estribos circulares o hélices.

3. 4. COMPORTAMIENTO DEL ACERO

Debido a la baja resistencia a la tensión que presenta el hormigón, este se combina con el acero para formar el hormigón armado y lograr resistir esfuerzos de tensión en elementos estructurales. Adicionalmente, el acero también es usado para resistir esfuerzos de compresión y así lograr reducir la sección transversal de los elementos.

Para que el acero trabaje conjuntamente con el hormigón, es necesario que las varillas tengan suficiente rugosidad y así lograr una eficiente adherencia entre los dos materiales.

Para describir las propiedades mecánicas del acero, es necesario el estudio de las curvas Esfuerzo-Deformación, definidas mediante diferentes regiones que varían dependiendo de la composición química del material y del proceso de fabricación.

Las diferentes zonas que definen la curva esfuerzo-deformación del acero son las siguientes (Fig. 12.):

- Rango elástico.
- Zona de fluencia
- Zona de Endurecimiento por deformación.
- Fractura.

Fig. 12. Zonas que definen la curva esfuerzo-deformación. ROMO M. Escuela Superior Politécnica del Ejército-Ecuador

En el rango elástico, cuando el acero es sometido a esfuerzos de tensión, este se deforma, recuperando su estado original una vez que la carga es retirada. Cuando el esfuerzo aplicado excede el límite elástico, el material se deforma, sin embargo no recupera su forma original al ser descargado.

La longitud de la zona de fluencia y de endurecimiento por deformación dependerá de la resistencia del material y del proceso de fabricación. El

acero trabajado en frío no presenta una zona de fluencia bien definida; los de alta resistencia con alto contenido de carbono presentan una plataforma más corta que los aceros de baja resistencia y bajo contenido de carbono.

Los aceros de alta resistencia también presentan una menor zona de endurecimiento por deformación que los de baja resistencia, es decir que presentan menores deformaciones hasta llegar a la fractura como se lo puede observar en la Fig. 13.

Es de gran importancia sobre todo en zonas sísmicas, no exceder una determinada resistencia a la fluencia, ya que resistencias muy altas podrían producir una falla frágil producida por un incremento de esfuerzos cortantes.

Fig. 13. Curvas Esfuerzo – Deformación para acero de diferentes resistencias. Nilson (1999) En la siguiente tabla se muestran los requisitos mínimos de resistencia de la ASTM.

	Fenerificación	Conte	Resistencia a la flue	mínima ncia	Resistenciamáxima a la tensión			
Producto	ASMT	o tipo	kib/pulg ²	MPa	klb/pulg ²	MPa		
Barras de refuerzo	A615	Grado 40 Grado 60 Grado 75	40,000 60,000 75,000	(275) (415) (515)	70,000 90,000 100,000	(480) (620) (690)		
	A616	Grado 50 Grado 60	50,000 60,000	(345) (415)	\$0,000 90,000	(550) (620)		
	A617	Grado 40 Grado 60	40,000 60,000	(275) (415)	70,000 90,000	(480) (620)		
	A706	Grado 60	60,000 [78,000 máximo]	(414) (535)	80,000	(550)°		
Parrilla de barras wrrugadas	A184		Igual que j de refuerz	para barra 0	s			
Barras recubiertas con zinc	A767		Igual que j de refuerz	para barra o	5			
Barras recubiertas con epóxico	A775	Igual que para barras de refuerzo						
Alambre Liso	A82		70,000	(480)	80,000	(550)		
Corrugado	A496		75,000	(515)	85,000	(585)		
Malla electrosoldada de alambrón Liso W1.2 y mayor Menor que W1.2	A185		65,000 56,000	(450) (385)	75,000 70,000	(515) (480)		
Corrugado	A497		70,000	(480)	80,000	(550)		

Tabla 7. Requisitos de resistencia de la ASTM. Nilson(1999)

Módulo de Elasticidad

El módulo de elasticidad es igual para todos los aceros de refuerzos, representa la pendiente de la recta que se encuentra en el rango elástico.

Se obtiene al dividir el esfuerzo para la deformación unitaria lo que resulta en un valor igual a $E_s = 2030000 \frac{Kg}{cm^2}$

3. 5. MODELOS DE CURVAS ESFUERZO - DEFORMACIÓN DEL ACERO

Al igual que el hormigón, existen varios investigadores que han idealizado varios modelos para curvas de Esfuerzo – Deformación del acero.

3.5. 1. Modelo de Park & Paulay (1975)

En este modelo existen tres regiones definidas de la siguiente manera:

Fig. 14. Curva esfuerzo-deformación de Park & Paulay (1975)

Región AB

 $\varepsilon_s \leq \varepsilon_y$

$$f_s = \varepsilon_s E_s \tag{3.33}$$

Región BC

 $\varepsilon_y \leq \varepsilon_s \leq \varepsilon_{sh}$

$$f_s = f_y \tag{3.34}$$

Región CD

 $\varepsilon_{sh} \leq \varepsilon_s \leq \varepsilon_{su}$

$$f_s = f_y \left[\frac{m \left(\varepsilon_s - \varepsilon_{sh}\right) + 2}{60 \left(\varepsilon_s - \varepsilon_{sh}\right) + 2} + \frac{\left(\varepsilon_s - \varepsilon_{sh}\right) \left(60 - m\right)}{2(30r + 1)^2} \right]$$
(3.35)

$$m = \frac{\left(\frac{f_{su}}{f_y}\right)(30r+1)^2 - 60r - 1}{15r^2}$$
(3.36)

$$r = \varepsilon_{su} - \varepsilon_{sh} \tag{3.37}$$

Donde:

 f_y : Esfuerzo de fluencia nominal en el acero.

fsu: Esfuerzo último

 ε_s : Deformación unitaria del acero.

 ε_{su} : Deformación unitaria última.

 ε_{sh} : Deformación unitaria en la que inicia el endurecimiento por deformación.

3.5. 2. Modelo de Ahmad & Shah (1985)

$$\varepsilon_{sh} = 0.0145 - 0.00009 f_y(ksi)$$
 (3.38)

$$\varepsilon_{su} = 0.0867 - 0.00023 f_y (ksi)$$
 (3.39)

$$f_{su} = 73.20 + 0.523 f_{y} (ksi)$$
(3.40)

Los esfuerzos en la zona de endurecimiento por deformación se definen por:

$$f_s = f_y + Y \left(f_{su} + f_y \right)$$
(3.41)

$$Y = \frac{AX + (B-1)X^2}{1 + (A-2)X + BX^2}$$
(3.42)

$$X = \frac{\varepsilon_s - \varepsilon_{sh}}{\varepsilon_{su} - \varepsilon_{sh}}$$
(3.43)

$$A = 1.735$$
 (3.44)

$$B = 3.62$$
 (3.45)

3. 6. DIAGRAMA DE MOMENTO - CURVATURA

Para la elaboración del diagrama momento – curvatura es muy importante conocer los siguientes principios:

- Las secciones planas seguirán planas después de la flexión.
- Establecer la curva esfuerzo deformación del acero.
- o Establecer la curva esfuerzo deformación del concreto.
- Equilibrio de fuerzas y momentos flectores.

3.6. 1. Curvatura de un Elemento

Al aplicar momentos en los extremos y fuerzas axiales iguales a un elemento de hormigón armado que se encuentra inicialmente recto, se puede observar que los planos laterales de la sección seguirán planos después de aplicar el momento flector.

La distancia al eje neutro será el radio de curvatura R como se muestra en la Fig.15. Usando las relaciones planteadas por Park & Paulay (1978) podemos encontrar la curvatura, considerando un elemento de longitud dx.

Fig. 15. Deformación de un miembro a flexión. Park & Paulay (1978)

Al determinar la relación momento curvatura de un elemento estructural se podrá llegar a conocer su ductilidad y resistencia máxima. Es posible la obtención del factor de ductilidad de curvatura al relacionar la curvatura última con la curvatura de fluencia:

$$\boldsymbol{\mu}_{\boldsymbol{\varphi}} = \frac{\varphi_u}{\varphi_y} \tag{3.47}$$

Los elementos que poseen una cuantía mayor que la cuantía de balance, presentará una falla frágil, que puede ser apreciada al realizar la curva $M - \varphi$ debido a que deja de ser lineal en el momento que el hormigón entra en el rango inelástico.

3.6. 2. Procedimiento para Calcular el Diagrama Momento – Curvatura

1) Al fijar la carga la carga axial real que actúa sobre el elemento estructural, se propone un valor ε_c de deformación unitaria en la fibra extrema a compresión.

Fig. 16 Diagrama de deformación unitaria

- 2) Se asume un valor de profundidad de eje neutro kd
- Se calculan las deformaciones unitarias, donde se encuentran las varillas longitudinales a compresión y tensión.

 Se calculan las fuerzas a compresión y tensión, multiplicando los valores de f_s obtenidos de las curvas esfuerzo-deformación del acero por el área del acero longitudinal en dicha fibra.

Fig. 17. Diagrama de Esfuerzos y Fuerzas de compresión y tensión

- 5) Se calcula la fuerza de compresión del hormigón.
- 6) Al sumar las fuerzas de compresión y tensión producidas por el acero y la fuerza producida por el hormigón, el resultado debe ser igual a la carga axial inicial fijada cumpliendo con el equilibrio de fuerzas.
- 7) Si esto no se cumple, mediante un proceso iterativo, se propone un valor diferente de kd hasta lograr que la sumatoria de fuerzas del acero y el hormigón sean igual a la carga axial real aplicada.
- Se calculan los momentos producidos por las fuerzas del acero y del hormigón.
- 9) Se calcula la curvatura al dividir la deformación unitaria del hormigón ε_c para la distancia al eje neutro kd.
- Se relaciona el momento con la curvatura obtenida, siendo el eje Y el momento y el eje X la curvatura.
- Se calculan los demás puntos de la gráfica, repitiendo el procedimiento mostrado.

3.6. 3. Deformaciones a partir de Curvaturas

Es posible obtener la rotación que se produce en un elemento mediante:

$$\boldsymbol{\theta}_{AB} = \int_{A}^{B} \boldsymbol{\varphi} \, dx \tag{3.48}$$

La deformación de un miembro se la obtiene de:

$$\Delta_{AB} = \int_{A}^{B} x \varphi \, dx \tag{3.49}$$

Para un elemento en voladizo, la curvatura se distribuye a lo largo del elemento como se muestra en la Fig. 18. Las variaciones que se presentan en la curvatura se deben a los cambios de rigidez producidos entre las grietas.

Fig. 18. Distribución de curvatura real en una columna en voladizo. Park & Paulay (1978)

Fig. 19. Distribución idealizada de curvatura para un elemento en voladizo. Park & Paulay (1978)

La distribución real de la curvatura puede ser idealizada de una manera elasto-plástica, remplazando la zona elástica por un triángulo y la zona inelástica mediante un rectángulo; donde la altura se obtiene restando la curvatura última menos la curvatura de fluencia, cuyo ancho es l_p , la cual representa la longitud de la articulación plástica.

Por lo tanto de la Fig. 19. usando el principio de área-momento, podemos obtener la rotación del elemento sumando la rotación producida en el rango elástico y la rotación en el rango inelástico.

$$\boldsymbol{\theta}_{AB} = \boldsymbol{\theta}_e + \boldsymbol{\theta}_p \tag{3.50}$$

Donde:

$$\boldsymbol{\theta}_{e} = \boldsymbol{\varphi}_{y} \frac{l}{2} \tag{3.51}$$

$$\boldsymbol{\theta}_p = (\boldsymbol{\varphi}_u - \boldsymbol{\varphi}_y) \boldsymbol{l}_p$$
 (3.52)

Lo que resulta:

$$\boldsymbol{\theta}_{AB} = \boldsymbol{\varphi}_{y} \frac{l}{2} + (\boldsymbol{\varphi}_{u} - \boldsymbol{\varphi}_{y}) \boldsymbol{l}_{p}$$
(3.53)

A partir de la ecuación planteada se puede obtener la deformación del elemento.

$$\Delta_{AB} = \left(\varphi_{y} \frac{l}{2} \frac{2l}{3}\right) + \left(\varphi_{u} - \varphi_{y}\right) l_{p} \left(l - \frac{l_{p}}{2}\right)$$
(3.54)

3.6. 4. Ejemplo de Aplicación de Diagrama Momento – Curvatura y de Fuerza – Desplazamiento.

Se realizaron diagramas de Momento – Curvatura y Fuerza – Desplazamiento de las columnas B4 y D4 de un edificio de hormigón armado. La descripción de los cálculos realizados se encuentra en Anexos 1 y Anexos 2 La estructura está formada por 11 niveles con una altura entrepiso de 3.60 m, posee columnas y vigas rectangulares, losas con nervios prefabricados. (Fig. 20.)

Las columnas que se analizaron inician en la planta baja y terminan en la losa de segundo piso, el análisis fue realizado en la dirección "X" y en la dirección "Y.

Fig. 20. Planta tipo de edificio a analizar.

COLUMNA EJE B4 (70x50)

h –

Propiedades de la Sección Transversal

$D_{\rm X}$ –	70.00 011	
b _y =	50.00 cm	Dimensión de la sección en Y
rec. =	3.50 cm	Recubrimiento al CL. Del estribo.

$A = b_x b_y =$	3500 cm ²	Área de la sección
$b_{cx} = b_x - rec. =$	63.00 cm	Dimensión de la sección confinada en X
$b_{cy} = b_y - rec. =$	43.00 cm	Dimensión de la sección confinada en Y
$A_C = b_{cx}b_{cy} =$	$2709 \ cm^2$	Área de la sección confinada.

Acero de Refuerzo longitudinal

Fila 1: $A_{S1} = 4 \phi 25 = 19.63 cm^2$ Fila 2: $A_{S2} = 2 \phi 25 = 9.82 cm^2$ Fila 3: $A_{S3} = 4 \phi 25 = 19.63 cm^2$ $A_{ST} = A_{S1} + A_{S2} + A_{S3} = 49.09 cm^2$ Área de refuerzo longitudinal $\rho_{cc} = \frac{A_{ST}}{A_{cc}} = 1.81\%$ Cuantía de refuerzo longitudinal confinada

Acero de Refuerzo Transversal

$$\phi_{est} = 8 mm$$

$$s = 150 mm$$

$$s' = 142 mm$$

$$N_{RX} = 3.5$$

$$N_{Ry} = 4$$

$$A_{sx} = \frac{\pi \ (0.8)^2}{4} \ (N_{RX}) = \frac{1.76 \ cm^2}{4}$$

$$\rho_x = \frac{A_{sx}}{s b_{cy}} = \qquad \qquad 0.27 \%$$

$$A_{sy} = \frac{\pi \ (0.8)^2}{4} \ (N_{RY}) = 2.01 \ cm$$

$$\rho_y = \frac{A_{sy}}{s b_{cx}} = 0.21 \%$$

$$\rho_s = \rho_x + \rho_y = 0.4$$

Diámetro del estribo Espaciamiento longitudinal Espaciamiento libre longitudinal Número de ramas en X. Número de ramas en Y Área del refuerzo transversal en X Cuantía de acero transversal confinado en X

$$m^2$$
 Área del refuerzo transversal en Y

Propiedades del hormigón no confinado

$$f'_{co} = 240 \frac{Kg}{cm^2}$$
 Resistencia a la compresión no
 $E_c = 15100\sqrt{f'_{co}} = 233928.20 \frac{Kg}{cm^2}$ Módulo de elasticidad del hormigón

La deformación unitaria inicial puede ser asumida como:

 $\varepsilon_c = 0.002$ Según Richard (1928).

 $\varepsilon_{sp} = 0.005$

La deformación unitaria por descascaramiento es considerada igual a:

$$f_{to} = 2\sqrt{f'_{co}} = 31 \frac{Kg}{cm^2}$$
 Resistencia a la tensión no confinada

$$\varepsilon_{to} = \frac{f_{to}}{E_c} = 0.00013$$
 Deformación unitaria a la tensión

Propiedades del acero de refuerzo ASTM A706

$$f_y = \frac{Kg}{cm^2}$$
 Esfuerzo de fluencia.
 $E_s = \frac{2030000 \frac{Kg}{cm^2}}{m^2}$ Módulo de Elasticidad.

Usando el modelo de Park & Paulay (1975), se consideró lo siguiente:

$\varepsilon_y =$	0.0021	Deformación unitaria de Fluencia.
$\varepsilon_{sh} = 5\varepsilon_y =$	0.0100	Deformación unitaria por Endurecimiento por
		Deformación
$\varepsilon_{su} =$	0.1100	Deformación unitaria última

Según la Tabla 7, donde se muestran los requisitos de resistencia del ASTM, para el acero A706, se tiene una resistencia máxima de 80000 klb/ plg², lo que equivale a:

$$f_{su} = \frac{4}{3} f_y = 5600 \frac{Kg}{cm^2}$$
 Resistencia Última a la tensión.

De las ecuaciones mostradas en el modelo de Park & Paulay (1975), para la obtención de los esfuerzos se obtuvo la siguiente curva esfuerzo – deformación:

Fig. 21. Curva Esfuerzo-Deformación. Modelo de Park & Paulay (1975)

Propiedades del Hormigón Confinado

Se obtuvieron las siguientes propiedades a partir del Modelo de Mander (1988):

De la siguiente ecuación se obtuvo el factor de coeficiente efectivo:

$$k_{e} = \frac{\left(1 - \sum_{i=1}^{n} \frac{(w_{i})^{2}}{6 b_{cx} b_{cy}}\right) \left(1 - \frac{s'}{2b_{cx}}\right) \left(1 - \frac{s'}{2b_{cy}}\right)}{1 - \rho_{cc}}$$

$$k_e = \frac{\left(1 - \sum_{i=1}^n \frac{(w_i)^2}{6(63)(43)}\right) \left(1 - \frac{142}{63}\right) \left(1 - \frac{142}{43}\right)}{1 - 1.81\%} = 0.6422$$

Para obtener la resistencia a la compresión confinada, es necesario realizar un relación entre la presión de confinamiento efectivo en X y en Y.

$$f'_{lx} = f_y \ k_e \ \rho_x =$$
 7.36 $\frac{Kg}{cm^2}$ Presión de confinamiento efectivo en X
 $f'_{ly} = f_y \ k_e \ \rho_y =$ 5.74 $\frac{Kg}{cm^2}$ Presión de confinamiento efectivo en Y
 $\frac{f'_{lx}}{f'_{co}} =$ 0.03 Relación de confinamiento en X
 $\frac{f'_{ly}}{f'_{co}} =$ 0.02 Relación de confinamiento en Y

Para secciones rectangulares, se obtiene el factor de esfuerzo confinado mediante la Fig. 11, ubicando los valores obtenidos de $\frac{f'_{lx}}{f'_{co}}$ en el eje X y el valor de $\frac{f'_{ly}}{f'_{co}}$ en el eje de las Y.

El factor de esfuerzo confinado obtenido es $K = \frac{f'_{cc}}{f'_{co}} = 1.15$, el cual se empleará para determinar la resistencia a la compresión confinada.

$$f'_{cc} = K f'_{co} =$$
 276 $\frac{Kg}{cm^2}$ Resistencia a la compresión confinada

$$\varepsilon_{cc} = \varepsilon_{co} \left[1 + 5 \left(\frac{f'_{cc}}{f'_{co}} - 1 \right) \right] = 0.00328$$
 Deformation

.00328 Deformación unitaria en
$$f'_{cc}$$

$$4 + 1.4 \rho_s \frac{f_y \varepsilon_{su}}{f'_{cc}} = 0.01538$$
 Deformación unitaria del hormigón confinado (Pristley)

$$E_{\rm sec} = \frac{f'_{cc}}{\varepsilon_{cc}} = 84221 \frac{Kg}{cm^2}$$

 $\varepsilon_{cu} = 0.00$

Módulo secante del hormigón confinado

$$r = \frac{E_{\rm c}}{E_{\rm c} - E_{\rm sec}} = -\frac{1.56}{100}$$

Se calcula la curva esfuerzo-deformación mediante la ecuación (3.17) y (3.18) variando la deformación unitaria, se muestran los puntos calculados en Anexos 3.

$$f_c = \frac{x r f'_{cc}}{r - 1 + x^r}$$

$$x = \frac{\varepsilon_c}{\varepsilon_{cc}}$$

Fig. 22. Curva Esfuerzo-Deformación. Modelo de Mander (1988)

Cálculo de Cargas

Para calcular la carga axial que recibe la columna que se analizará, se realizó un modelo estructural en el software de elementos finitos ETABS 9.0.

Las columnas y vigas se modelaron con elementos tipos *Frame* y las losas nervadas mediante un elemento de área tipo *Membrana*. Se asignaron cargas distribuidas en la losa en una dirección.

Se asignaron diafragmas en cada piso y las columnas fueron consideradas empotradas en su base.

Fig. 23. Modelo de estructura de hormigón armado. ETABS 9.0

Carga muerta

Piso del 1 al 10

- Peso propio de la estructura (el programa considera el peso propio de columnas y vigas)
- Peso de losa nervada: 226 $\frac{Kg}{m^2}$
- Peso adicional: $300 \frac{Kg}{m^2}$

Cubierta

- Peso propio de la estructura (el programa considera el peso propio de columnas y vigas)

- Peso de losa nervada: 226 $\frac{Kg}{m^2}$
- Peso adicional: $150 \frac{Kg}{m^2}$

• Carga viva

Según la Tabla 1.2 del Capítulo 1 de la NEC-11, la carga viva aplicada para residencias es igual a $200 \frac{Kg}{m^2}$, esta carga fue considerada para los pisos del 1 al 10.

Para la losa de cubierta se aplicó una carga viva distribuida igual a $100 \frac{Kg}{m^2}$

• Combinaciones de Cargas

De los resultados del modelo, para la columna seleccionada, se obtuvo una carga muerta axial igual a $P_D = 153.88 Ton$ y una carga viva $P_L = 33.22 Ton$.

Para calcular la carga axial total que recibe la columna se utilizó la siguiente combinación; aplicando un factor de reducción a la carga viva.

$$P_T = 1.2 P_D + 1.6 f P_L$$
(3.55)

f es el factor de reducción calculado a partir de la siguiente ecuación mostrada en el Capítulo I de la NEC-11.

$$f = 0.25 + \frac{4.57}{\sqrt{K_{LL}A_T}}$$
(3.56)

Donde:

 K_{LL} : Factor de sobrecarga según el elemento de soporte, ver Tabla 8.

 A_T : Área tributaria en metros cuadrados.

Elemento	KLL ^a
Columnas interiores	4
Columnas exteriores sin losas en volado	4
Columnas de borde con losas en volado	3
Columnas esquineras con losas en volado	
Vigas de borde sin losas en volado	2
	2
vigas interiores	2
Todos los demás elementos no identificados incluyendo:	
Vigas de borde con losas en volado	
Vigas en volado	
Losas en una dirección	1
Losas en dos direcciones	
Elementos que no tengan mecanismos de transferencia de cortante normal a la dirección de la luz	

^aEl valor de K _{LL} puede ser calculado en lugar de los valores precedentes

$$f = 0.25 + \frac{4.57}{\sqrt{4(21.42)}} = 0.74$$

Por lo tanto la carga axial que recibe la columna a analizar es:

 $P_T = 1.2 (153.88) + 1.6 (0.74)(33.22) = 223.96 Ton$

3.6.5. 1. COLUMNA B4 (70X50): Comparación de Diagrama Momento – Curvatura.

Se realizó una comparación gráfica entre la curva obtenida mediante puntos calculados manualmente en Anexos 1 (círculos verdes), la curva del análisis de la sección realizado en el programa de elementos finitos SAP 2000 (línea roja), la curva del programa KSU_RC (línea celeste) y la curva Momento - Curvatura realizada mediante una Hoja de Cálculo en Excel (línea morada) otorgada por un estudiante de la facultad de Ingeniería Civil, Alfredo Sánchez. (Fig. 24.)

	CÁLCULOS	CÁLCULOS MANUALES		CÁLCULO	KSU_RC		SAP 2000	
ε _{co}	φ x 10^3 (rad/m)	M (Ton-m)	φ x 10^3 (rad/m)	M (Ton-m)	φ x 10^3 (rad/m)	M (Ton-m)	φ x 10^3 (rad/m)	M (Ton-m)
0.0010	3.43	41.20	3.44	42.24	3.64	42.87	3.88	43.27
0.0021	9.10	71.05	9.02	69.38	10.11	70.18	9.99	69.68
0.0030	16.03	75.25	16.04	74.86	16.58	74.53	16.85	73.68
0.0050	25.91	71.33	25.91	71.62	25.48	68.39	25.49	70.91
0.0100	48.31	68.18	48.32	68.30	50.56	68.50	54.86	70.94
0.0150	68.49	62.50	68.49	66.82	_	_	77.8	70.54
0.0180	80.25	65.99	79.94	66.09	_		90.77	70.47

Tabla 9. Comparación de Diagrama Momento- Curvatura entre cálculos manuales, hoja de cálculo, KSU-RV, SAP 2000.

Fig. 24. Comparación de Diagrama Momento – Curvatura. Columna B4 (70x50)

3.6.5. 2. COLUMNA B4 (70X50): Diagrama de Fuerza-Desplazamiento

Se realizó una curva idealizada elasto-plástica a partir de la curvatura de fluencia y la curvatura última obtenidas del ejemplo anterior.

Se consideró una columna en voladizo:

l = 3.60 m = 141.73 plg.	Longitud de la columna
$d = 44.85 \ cm = 17.68 \ plg$	Peralte de la sección
$z = 3.60m = 141.73 \ plg.$	Distancia entre puntos de inflexión
$\varphi_y = 9.10 \ x \ 10^{-3} \ \frac{rad}{m}$	Curvatura de fluencia
$\varphi_u = 80.25 \ x \ 10^{-3} \ \frac{rad}{m}$	Curvatura última

Se utilizó la expresión propuesta por Corley-Mattock para calcular l_p :

$$l_p = 0.5(17.68) + 0.05(141.73) = 15.9265 \ plg = 40.45 \ cm$$

Usando el principio de área-momento se obtuvo:

$$\Delta_{AB} = \left(\frac{9.10x10^{-3}(3.60)^2 * 2}{2 * 3}\right) + (80.25x10^{-3} - 9.10x10^{-3})(0.4045)\left(3.60 - \frac{0.4045}{2}\right)$$
$$\Delta_{AB} = 0.0393 + 0.0920 = 0.1313 m$$

La fuerza aplicada se calcula:

$$F = \frac{M_y}{H} \tag{3.57}$$

Siendo:

My: Momento de fluencia

- H: Longitud de la columna
- F: Fuerza lateral aplicada

$$F = \frac{71.05}{3.60} = 19.74 \, Ton$$

Se realizó una comparación gráfica entre la curva calculada de fuerzadesplazamiento y la curva obtenida mediante el programa KSU-RC

Fig. 25. Comparación de curva Fuerza-Desplazamiento. Columna B4 70x50

Se realizará el diagrama Fuerza – Desplazamiento de la misma columna considerando que trabaja doblemente empotrada.

Para obtener el desplazamiento se considera la mitad de la longitud real de la columna.

$$l = 1.80 \ m = 70.87 \ plg.$$
 Longitud de la columna

$$d = 44.85 \ cm = 17.68 \ plg$$
 Peralte de la sección

$$z = 1.80m = 70.87 \ plg.$$
 Distancia entre puntos de inflexión

$$\varphi_y = 9.10 \ x \ 10^{-3} \ \frac{rad}{m}$$
 Curvatura de fluencia

$$\varphi_u = 80.25 \ x \ 10^{-3} \ \frac{rad}{m}$$
Curvatura última
$$l_p = 0.5(17.68) + 0.05(70.87) = 12.3835 \ plg = 31.45 \ cm$$
$$\Delta_{AB} = \left(\frac{9.10 x 10^{-3} (1.80)^2 * 2}{2 * 3}\right) + (80.25 x 10^{-3} - 9.10 x 10^{-3})(0.3145) \left(1.80 - \frac{0.3145}{2}\right)$$
$$\Delta_{AB} = 0.0098 + 0.0368 = 0.0467 \ m$$

Debido a que se ha considerado la mitad de la longitud de la columna, la deformación será el doble de la obtenida.

Por lo tanto:

$$\Delta_T = (0.0098x2) + (0.0368x2) = 0.0934m$$

$$\Delta_T = 0.0196 + 0.0736 = 0.0932m$$

$$F = \frac{2M_Y}{H} = \frac{2(71.05)}{3.60}$$
(3.58)

$$F = 39.47 Ton$$

	CÁLCULOS	CÁLCULOS MANUALES		CÁLCULO	KSU_RC		SAP 2000	
ε _{со}	φ (rad/m)	M (Tom-m)	φ (rad/m)	M (Tom-m)	φ (rad/m)	M (Tom-m)	φ (rad/m)	M (Tom-m)
0.0010	2.46	57.24	2.46	57.93	2.77	60.98	2.67	58.18
0.0021	6.10	92.48	6.10	91.59	6.91	94.38	6.85	92.59
0.0030	11.01	102.57	11.03	102.85	11.06	103.1	10.28	99.69
0.0050	18.70	98.16	18.70	98.43	18.67	97.39	17.51	97.5
0.0100	36.85	94.07	36.85	94.06	39.41	97.06	40.12	96.02
0.1500	54.20	94.79	54.20	92.73	58.42	96.79	56.34	95.48
0.0174	62.40	92.23	62.40	92.41	_	_	65.48	95.14

3.6.5. 3. COLUMNA B4 (50X70): Comparación de Diagrama Momento – Curvatura.

Tabla 10. Comparación de Momento Curvatura entre cálculos manuales, Hoja de Cálculo, KSU-RC, SAP 2000. Columna B4 (50x70)

Fig. 26. Comparación de Diagrama Momento –Curvatura. Columna B4 (50x70)

3.6.5. 4. COLUMNA D4 (70X50): Comparación de Diagrama Momento – Curvatura.

Se realizó un análisis de Momento-Curvatura y Fuerza-Desplazamiento de la columna D4.

	CÁLC	ALCULOS HOJA DE CÁLCULO		KSU_RC		SAP 2000		
εc	φ x 10^3 (rad/m)	M (Ton-m)	φ x 10^3 (rad/m)	M (Ton-m)	φ x 10^3 (rad/m)	M (Ton-m)	φ x 10^3 (rad/m)	M (Ton-m)
0.0010	2.31	39.39	2.31	39.84	2.43	40.78	2.21	37.55
0.0021	11.64	89.78	11.41	88.66	7.28	72.57	7.19	72.17
0.0030	11.20	88.29	11.20	88.53	11.73	89.05	11.5	87.85
0.0050	19.05	84.09	19.05	84.20	19.01	81.38	18.79	85.84
0.0100	37.14	78.97	37.14	78.95	39.24	81.81	41.68	85.17
0.0150	53.11	74.92	53.11	74.38	_	_	58.26	82.58
0.0198	67.71	70.54	67.71	70.90	_	_	69.53	73.97

Los valores obtenidos se encuentran en Anexos 2.

Tabla 11. Comparación de Momento – Curvatura. Columna D4 (70X50)

Fig. 27. Comparación de Diagrama Momento-Curvatura. Columna D4 (70x50)
	CÁLC	ULOS	HOJA DE CÁL		KSU_RC		SAP 2000	
εc	φ x 10^3 (rad/m)	M (Ton-m)						
0.0010	1.64	55.42	1.65	56.38	1.94	62.85	1.52	50.67
0.0021	7.55	124.51	7.59	124.13	5.45	108.77	4.95	99.8
0.0030	8.07	124.61	8.07	125.12	8.17	128.55	7.91	123.14
0.0050	13.79	124.01	13.79	122.09	14.00	126.57	14.39	130.11
0.0100	27.07	111.77	27.07	112.51	29.95	126.38	30.83	122.56
0.0150	39.65	106.40	39.65	106.48	44.72	125.12	42.64	116.95
0.0192	49.87	104.68	49.87	103.67	_		50.63	97.29

3.6.5. 5. COLUMNA D4 (50x70): Comparación de Diagrama Momento – Curvatura.

Tabla 12. Comparación de Momento Curvatura. Columna D4 (50x70)

Fig. 28. Comparación de Diagrama Momento – Curvatura. Columna D4 (50X70)

3. 7. RESULTADOS OBTENIDOS

	COLUMN	IA EJE B4	COLUMNA EJE D4		
VOLADIZO					
	70X50	50X70	70X50	50X70	
P axial (Ton)	223.96	223.96	367.12	367.12	
φy x10^-3 (rad/m)	9.1	6.1	11.64	7.55	
φu x10^-3 (rad/m)	80.25	62.4	67.71	49.87	
My (Ton-m)	71.05	92.48	89.78	124.51	
Mu (Ton-m)	65.99	92.23	70.54	104.68	
lp (m)	0.4045	0.5042	0.4045	0.5042	
Δ _y (m)	0.0393	0.0264	0.05	0.0326	
Δ _u (m)	0.1313	0.1214	0.1273	0.0961	
Fu (Ton)	19.74	25.69	24.94	34.59	
Fy (Ton)	19.74	25.69	24.94	34.59	
μ	3.34	4.59	2.53	2.95	

Tabla 13. Resultados de columnas en voladizo

	COLUMN	IA EJE B4	COLUMNA EJE D4		
DOBLE EMPOTRADO					
	70X50	50X70	70X50	50X70	
lp (m)	0.3145	0.4142	0.3145	0.4142	
Δ _y (m)	0.0196	0.0132	0.0251	0.0164	
Δ _u (m)	0.0932	0.0874	0.0832	0.0722	
Fu (Ton)	39.47	51.38	49.88	69.17	
Fy (Ton)	39.47	51.38	49.88	69.17	
μ	4.76	6.62	3.31	4.40	

Tabla 14. Resultados columnas doblemente empotrada

3. 8. RESUMEN DE CAPÍTULO I, II, III, IV

- El factor R es empleado para reducir la intensidad de las fuerzas sísmicas elásticas a fuerzas inelásticas aplicadas.
- La Norma Ecuatoriana de Construcción (NEC 11) para pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas propone un valor del Factor R igual a 6, dicha norma muestra valores que depende únicamente de la tipología de la estructura.
- El código anterior CEC-2007, para el mismo tipo de estructura propone un valor del Factor R igual a 10.
- Cuando se seleccionan valores muy altos del Factor R se obtienen fuerzas sísmicas muy bajas.
- Los elementos estructurales deben poseer la ductilidad adecuada para lograr disipara energía mediante deformaciones inelásticas.
- El confinamiento del hormigón otorga mayor ductilidad al elemento.

- El refuerzo transversal en forma de hélice confiere mayor confinamiento que los de forma rectangular.
- A menor espacio entre el refuerzo transversal se tiene mayor ductilidad.
- Para la obtención de la ductilidad, es necesario elaborar un Diagrama Momento – Curvatura.
- Para el Diagrama Momento Curvatura se deben conocer las propiedades mecánicas de los materiales mediante las cuevas Esfuerzo-Deformación.
- De los ejemplos realizados, se obtuvo una mayor ductilidad para la columna de menor acero longitudinal.
- Se realizó el análisis en ambas direcciones, se obtuvo mayor ductilidad para análisis en el lado corto.
- Las columnas empotradas tienen mayor ductilidad que cuando se considera en voladizo.
- La deformación última es mayor para las columnas en voladizo.

CAPITULO IV

4. DESCRIPCIÓN DE LA ESTRUCTURA EN ESTUDIO

En este trabajo se obtuvo los factores R para cada uno de los pórticos del edificio mostrado en la Fig. 29. y anteriormente en la sección 3.6. 4.

Fig. 29. Planta tipo de estructura a analizar

4. 1. DESCRIPCIÓN DE LA GEOMETRÍA DE LOS PÓRTICOS

El edificio está formado por cinco pórticos de hormigón armado en el Eje X y cuatro pórticos en el Eje Y, consta de 11 niveles con una altura entrepiso de

3.60 metros. En el Eje X los pórticos poseen cuatro vanos y los pórticos del Eje Y poseen tres vanos. (Fig. 29)

	Longitud (m)					
	Primer Vano	Segundo Vano	Tercer Vano	Cuarto Vano		
Eje A, B	4.10	3.65	3.65	3.00		
Eje C, D	4.10	7.30	3.00			
Eje 5,4,2,1	5.55	4.60	5.90	_		

Tabla 15. Geometría de los pórticos.

Pórticos en el Eje x

Fig. 30. Pórtico en 2D, Ejes 1, 2, 4 y 5

Fig. 31. Pórtico en 2D, Eje A

Fig. 33. Pórtico 2D, Eje C, Eje D

4. 2. PROPIEDADES DE LOS ELEMENTOS ESTRUCTURALES

La estructura está formada por columnas y vigas rectangulares de hormigón armado. Las secciones de los elementos estructurales se encuentran a continuación:

Detalle de Columnas

		DETALLE DE COLUMNAS							
		EJE A		EJE B, EJE C	EJE D				
PCUB			50X40	4Ф18+4Ф20mm	50X40	4Ф18+4Ф20mm			
P10			50X40	4Ф20+4Ф20mm	50X40	4Ф20+4Ф20mm			
P9	55X40	4Ф20+4Ф20mm	55X40	4Ф20+4Ф20mm	55X40	4Ф20+4Ф20mm			
P8	55X45	6Ф20+4Ф22mm	55X45	6Ф20+4Ф22mm	55X45	6Ф20+4Ф22mm			
P7	55X50	6Ф20+4Ф22mm	55X50	6Ф20+4Ф22mm	55X50	6Ф20+4Ф22mm			
P6	60X50	6Ф22+4Ф22mm	60X50	6Ф22+4Ф22mm	60X50	6Ф22+4Ф22mm			
P5	65X50	6Ф22+4Ф22mm	65X50	6Ф22+4Ф22mm	65X50	6Ф22+4Ф22mm			
P4	70X50	6Ф22+4Ф25mm	70X50	6Ф22+4Ф25mm	70X50	6Ф25+4Ф25mm			
P3	70X50	6Ф22+4Ф25mm	70X50	6Ф22+4Ф25mm	70X50	6Ф25+4Ф25mm			
P2	70X50	10Ф25mm	70X50	10Ф25mm	70X50	4Ф22+10Ф25mm			
P1	70X50	10Ф25mm	70X50	10Ф25mm	70X50	4Ф22+10Ф25mm			

Tabla 16. Detalle de columnas del edificio de hormigón armado en estudio

Detalle de Vigas

	DETALLE DE VIGAS								
		EJE A, EJE B		EJE C			EJE D		
	SECCI	COMPRESI	TENSI	SECCI	COMPRESIÓ	TENSI	SECCI	COMPRESIÓ	TENSI
	ÓN	ÓN	ÓN	ÓN	N	ÓN	ÓN	N	ÓN
	25760	2 0 16mm	3Ф16	20760	3Ф16+2Ф18	3Ф18	20760	3Ф18+3Ф20	3Ф18
PCUB	25700	5Φτοιιιιι	mm	50700	mm	mm	50700	mm	mm
	25760	2 0 19mm	3Ф18	Φ18 201/00	3Ф16+2Ф18	3Ф18	20760	3Ф18+3Ф20	3Ф18
P10	25700	501911111	mm	50700	mm	mm	50700	mm	mm
	25760	2 0 20mm	3Ф18	20760	3Ф18+2Ф20	3Ф20	20760	3Ф18+3Ф20	3Ф20
P9	23700	3 4 2011111	mm	m 30760	mm	mm	50700	mm	mm
	25760	1019mm	3Ф20	3020	3Ф18+2Ф20	3Ф20	30X60	3Ф18+3Ф20	4Φ20
P8	23700	4Ψ10ΠΠΠ	mm	30700	mm	mm		mm	mm
	25760	1019mm	3Ф20	20760	3Ф18+2Ф20	3Ф20	30X60	3Ф18+3Ф20	4Φ20
P7	23700	4Ψ10ΠΠΠ	mm	30700	mm	mm		mm	mm
	25760	1019mm	3Ф20	20760	3Ф18+2Ф20	3Ф20	20760	3Ф18+3Ф20	4Φ20
P6	25700	4Ψ10ΠΠΠ	mm	50700	mm	mm	50700	mm	mm
	25760	1019mm	3Ф20	20760	3Ф18+2Ф20	3Ф20	20760	3Ф18+3Ф20	4Φ20
P5	25700	4Ψ10ΠΠΠ	mm	50700	mm	mm	50700	mm	mm
	25760	100mm	4Φ20	20760	3Φ18+2Φ20	4Φ20	20760	3Φ18+3Φ20	5Φ20
P4	23700	4ΨΖΟΙΠΙΪΪ	mm	20700	mm	mm	20700	mm	mm
	25760	400000	4Φ20	20260	3Ф18+2Ф20	4Φ20	20260	3Ф18+3Ф20	5Ф20
P3	23700	4ΨΖΟΠΙΪΪ	mm	20700	mm	mm	20700	mm	mm

	25860	<u>ለ</u> መንበመም	4Φ20	30760	3Ф18+2Ф20	4Φ20	30760	3Ф18+3Ф20	5Φ20
P2	23700	4ψ2011111	mm	30700	mm	mm	30700	mm	mm
	25760	1000mm	4Φ20	20760	3Ф18+2Ф20	4Φ20	20760	3Ф18+3Ф20	5Φ20
P1	25700	4Ψ2011111	mm	50700	mm	mm	50700	mm	mm

			DETALLE	DE VIGAS				
		EJE 1, EJE 5	5		EJE 2, EJE 4			
	SECCIÓN	COMPRESIÓN	TENSIÓN	SECCIÓN	COMPRESIÓN	TENSIÓN		
PCUB	30X60	3Ф16+2Ф18mm	3Ф18	30X60	3Ф16+2Ф18mm	3Ф16		
P10	30X60	3Ф20+2Ф18mm	3Ф18	30X60	3Ф20+2Ф18mm	3Ф18		
Р9	30X60	6Ф20mm	3Ф18+1Ф18mm	30X60	6Ф20mm	3Ф18+2Ф18mm		
P8	30X60	6Ф20mm	3Ф18+2Ф18mm	30X60	6Ф20mm	3Ф18+2Ф18mm		
P7	30X60	6Ф20mm	3Ф18+2Ф18mm	30X60	6Ф20mm	3Ф18+2Ф18mm		
P6	30X60	6Ф20mm	3Ф18+2Ф18mm	30X60	6Ф20mm	3Ф18+2Ф18mm		
P5	30X60	6Ф20mm	3Ф18+2Ф18mm	30X60	6Ф20mm	3Ф18+2Ф18mm		
P4	30X60	6Ф20mm	3Ф18+2Ф20mm	30X60	6Ф20mm	3Ф18+2Ф20mm		
P3	30X60	6Ф20mm	3Ф18+2Ф20mm	30X60	6Ф20mm	3Ф18+2Ф20mm		
P2	30X60	6Φ20mm	3Ф18+2Ф20mm	30X60	6Ф20mm	3Ф18+2Ф20mm		
P1	30X60	6Φ20mm	3Ф18+2Ф20mm	30X60	6Ф20mm	3Ф18+2Ф20mm		

Tabla 17. Detalle de vigas del edificio de hormigón armado en estudio

		PRIMER CASO	SEGUNDO CASO
	Estribos	Φ 8 mm	Φ 10 mm
COLUMNAS	Espaciamiento	150/200/150 mm	100/200/100 mm
	εси	0.015	0.028
	Estribos	Φ 8 mm	Φ 10 mm
VIGAS	Espaciamiento	150/200/150 mm	100/200/100 mm
	εсυ	0.015	0.025

Tabla 18. Diferencias entre primer caso y segundo caso

Se analizaron dos casos; el primer caso, la obtención del Factor R de la estructura mostrada en la Fig. 29, cuyos elementos estructurales fueron considerados como *"Nonconforming transverse reinforcement"*.

El confinamiento de los elementos de la estructura analizada cumple con lo establecido en el FEMA-356, el cual considera que un elemento estructural está adecuadamente confinado si el espaciamiento entre estribos es < d/3.

Sin embargo, se consideró que no está adecuadamente confinada debido a que no cumple con los parámetros propuestos por la NEC-11.

La sección 4.2.7.1 de la NEC -11 estable lo siguiente:

Se debe colocar estribos para confinamiento, de al menos 10 mm de diámetro, en toda la longitud de traslape de varillas de refuerzo longitudinal. El espaciamiento máximo de este refuerzo en esas zonas no puede exceder d/4 ó 100 mm.

Fig. 34. Parámetros de confinamiento establecidos por la NEC-11

Para el segundo caso se realizó la obtención del Factor R de la misma estructura, donde se modificó el confinamiento tomando en cuenta los parámetros establecidos por la NEC-11. En este caso los elementos estructurales fueron considerados como "*Conforming transverse reinforcement*".

En la Tabla 18. se muestran la diferencia entre los casos analizados. Los valores de deformación unitaria última del hormigón fueron calculados mediante los modelos de esfuerzo y deformación, mostrados en el ejemplo 3.6. 4.

Las propiedades del hormigón y del acero longitudinal y transversal fueron descritas en el Ejemplo 3.6. 4.

67

CAPITULO V

5. MÉTODO DE ESPECTRO DE CAPACIDAD

Para el cálculo del Factor R es necesario el estudio del Método de Espectro Capacidad, el cual relaciona el Espectro de Capacidad con el Espectro de Demanda en unidades de Aceleración - Desplazamiento.

Para obtener el Espectro de Capacidad se calculó la curva Pushover mediante el programa SAP2000.

Para el Espectro de Demanda se calculó el Espectro Elástico siguiendo los parámetros establecidos en la NEC-11.

Fig. 35. Método de Espectro Capacidad

5. 1. CÁLCULO DE LA CURVA PUSHOVER POR MEDIO DEL PROGRAMA SAP 2000

Para el cálculo de la curva Pushover, se realizó un modelo estructural en dos dimensiones de la estructura de hormigón armado Fig. 29, por medio del programa de elementos finitos SAP 2000 Ultimate 15.1.0.

- Se crearon los elementos estructurales mediante la herramienta Section Designer, en donde se definen las dimensiones de la sección, con sus respectivas varillas longitudinales y refuerzos transversales. Se ingresa el valor de la deformación unitaria última del hormigón en cada sección, obtenida mediante el modelo Esfuerzo-Deformación de Park & Paulay (1975) para el acero y el modelo de Mander (1988) para el hormigón.
- Se asignaron las rótulas plásticas a los elementos estructurales, utilizando el criterio del FEMA-356, el cual se basa en los parámetros mostrados en la Tabla 6-7 para vigas de hormigón armado y la Tabla 6-8 para columnas de hormigón armado. (Anexos 4).
- Para el primer caso, se consideró "Nonconforming transverse reinforcement".
- Para el segundo caso, se consideró "Conforming transverse reinforcement".

Auto Hinge Assignment Data	
Auto Hinge Type	
From Tables In FEMA 356	
Select a FEMA356 Table	
Table 6-7 (Concrete Beams - Flexure) Item i	v
Component Type Degree of Freedom Primary C M2 C Secondary © M3	V Value From
Transverse Reinforcing Transverse Reinforcing is Conforming	Reinforcing Ratio (p - p') / pbalanced From Current Design User Value
Deformation Controlled Hinge Load Carrying Capacity O Drops Load After Point E Is Extrapolated After Point E	
OK	Cancel

Fig. 36 Rótulas plásticas para Vigas de hormigón armado. (Conforming transverse reinforcement)

- Se asignaron diafragmas a cada piso.
- Las columnas se consideran empotradas en los extremos inferiores
- Se definió en Load Cases la carga muerta DEAD como, Estática no Lineal (Nonlinear Static).

Load Case Name] [Notes	Load Case Type
DEAD	Set Def Name	Modify/Show	Static 💽 Design.
Initial Conditions			Analysis Type
 Zero Initial Condition 	s - Start from Unstressed 9	State	C Linear
Continue from State	at End of Nonlinear Case	_	 Nonlinear
Important Note: Loa cur	ads from this previous case rent case	e are included in the	O Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL 💌	None
Loads Applied			C P-Delta
Load Tupe Loa	ad Name – Scale Facto	nr.	C P-Delta plus Large Displacements
Load Patterr - DEAI			
Load Pattern DEAI	1.	Add	
		Modify	
		Delete	
, ,	*		
Other Parameters	E all Lanad	Modify/Show	OK
Other Parameters	Full Load		
Other Parameters Load Application Results Saved	Fuil Load Final State Only	Modify/Show	Cancel

Fig. 37. Definición de la carga muerta como estática no lineal

• Se define el *PUSHOVER* en *Load Case* de la misma manera, tipo no lineal.

Load Case Data - Nonlinear Static	and the second se
Load Case Name Notes PUSHOVER Set Def Name Modify/Show	Load Case Type Static Design
Initial Conditions Cere Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case Important Note: Loads from this previous case are included in the current case Modal Load Case All Modal Loads Applied Load Structure Loads Applied Load Type Load Name Scale Factor Accel UX I. Accel UX I. Accel Delete	Analysis Type C Linear Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters None P-Delta P-Delta P-Delta plus Large Displacements
Other Parameters Load Application Displ Control Modify/Show Results Saved Multiple States Modify/Show Nonlinear Parameters Default Modify/Show	OK Cancel

Fig. 38. Definir el PUSHOVER

 Se define que la aplicación de la carga sea controlada por desplazamiento, para lo cual se selecciona *Displacement Control*, se estima un desplazamiento lateral aproximado, se determina el nodo en el cual se determinará el desplazamiento x máximo.

Load Application Control for Nonlinear St	atic Analysis
Load Application Control Full Load Isplacement Control	
Control Displacement	
C Use Conjugate Displacement	
 Use Monitored Displacement 	
Load to a Monitored Displacement Magni	itude of 2.
Monitored Displacement	
© DOF U1 ▼ at	Joint 47
C Generalized Displacement	_
	Cancel

Fig. 39. Control de Aplicación de carga, "Displacement Control"

 En la opción Results Saved, se selecciona Multiple States y se determinan la cantidad mínima y máxima de pasos que se presentarán del análisis.

Results Saved for Nonlinear Static Load Cases
Results Saved O Final State Only © Multiple States
For Each Stage Minimum Number of Saved States 50 Maximum Number of Saved States 200
Save positive Displacement Increments Only

Fig. 40. Número de pasos a analizar

 Se aplica la carga muerta a cada piso. Se consideró la misma carga muerta calculada para el ejemplo 3.6. 4. (WD= 0.526 Ton/m2), multiplicada por el ancho de influencia de cada pórtico.

Las cargas aplicadas a cada pórtico son las siguientes:

EJE X	Ancho de influencia (m)	Carga muerta (Ton/m2)	Carga muerta (Ton/m)
Eje 1	3.00	0.526	1.58
Eje 2	3.33	0.526	1.75
Eje 3	3.65	0.526	1.92
Eje 4	3.88	0.526	2.04
Eje 5	2.05	0.526	1.08

EJE Y	Ancho de influencia (m)	Carga muerta (Ton/m2)	Carga muerta (Ton/m)
Eje B	5.25	0.526	2.76
Eje A	2.95	0.526	1.55
Eje C	5.08	0.526	2.67
Eje D	4.35	0.526	2.29

Tabla 19. Carga muerta aplicada a cada pórtico.

• Finalmente, se corre el programa y se muestra la curva Pushover.

5. 2. CÁLCULO DEL ESPECTRO ELÁSTICO SEGÚN NEC-11

Según el NEC-11, el Espectro Elástico se calcula de la siguiente manera:

Donde:

n = 1.8 (Provincias de la Costa, excepto Esmeraldas), 2.48 (Provincias de la Sierra, Esmeraldas y Galápagos), 2.6 (Provincias del Oriente).

r = 1 (Suelo tipo A, B o C), 1.5 (Suelo tipo D o E).

$$T_{C} = 0.55 F_{S} \frac{F_{d}}{F_{a}}$$
(5.1)

Los factores F_{S_i} , F_d , F_a son obtenidos de la siguiente tabla:

	Zona sísmica	Ι	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
А		0.9	0.9	0.9	0.9	0.9	0.9
В		1	1	1	1	1	1
С		1.4	1.3	1.25	1.23	1.2	1.18
D		1.6	1.4	1.3	1.25	1.2	1.12
E		1.8	1.5	1.39	1.26	1.14	0.97
F		ver nota					

	Zona sismica	I	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.9	0.9	0.9	0.9	0.9	0.9
В		1	1	1	1	1	1
С		1.6	1.5	1.4	1.35	1.3	1.25
D		1.9	1.7	1.6	1.5	1.4	1.3
E		2.1	1.75	1.7	1.65	1.6	1.5
F		ver nota					

Tabla 21. Tipo de suelo y factores de sitio Fd (NEC-11)

	Zona sismica	Ι	II	III	IV	V	VI
Tipo de perfil del subsuelo	valor Z (Aceleración esperada en roca, ´g)	0.15	0.25	0.30	0.35	0.40	≥0.5
Α		0.75	0.75	0.75	0.75	0.75	0.75
В		0.75	0.75	0.75	0.75	0.75	0.75
С		1	1.1	1.2	1.25	1.3	1.45
D		1.2	1.25	1.3	1.4	1.5	1.65
E		1.5	1.6	1.7	1.8	1.9	2
F		ver nota					

Nota: Para los suelos tipo F no se proporcionan valores de Fa, Fd ni de Fs, debido a que requieren un estudio especial, conforme lo estipula la sección 2.5.4.9.

Tabla 22. Tipo de suelo y factores del comportamiento inelástico del subsuelo Fs (NEC-11)

Se calculó el Espectro Elástico que actuará en la estructura de hormigón armado en estudio. Fig. 29

Z = 0.50 Para una zona sísmica VI (Salinas, Provincia de Santa Elena) Tipo de suelo C (Perfil de suelo muy denso o roca blanda)

Por lo tanto:

$$T_C = 0.55 \ (1.45) \frac{1.25}{1.18} = 0.85 \ seg$$

Los valores del Espectro Elástico calculado se encuentran en Anexos 5

Fig. 42. Espectro Elástico (NEC-11)

5. 3 CÁLCULO DE MÉTODO DE ESPECTRO DE CAPACIDAD

5.3. 1. Espectro de Capacidad

El Espectro de Capacidad es la curva Pushover obtenida mediante el SAP 2000, en unidades Aceleración – Desplazamiento.

Se obtuvo la curva Pushover de cada uno de los pórticos de la estructura de hormigón armado. Para transformar las unidades de Fuerza –

Desplazamiento a Aceleración – Desplazamiento, se divide la Fuerza para la masa de cada pórtico.

5.3. 2. Espectro de Demanda

Para obtener el Espectro de Demanda, se calculó el espectro elástico en la sección 5. 2, para un amortiguamiento del 5%. El espectro elástico debe ser reducido con un amortiguamiento mayor al 5%.

El amortiguamiento efectivo es calculado mediante las siguientes ecuaciones, propuestas por el ATC-40:

$$\boldsymbol{\beta}_{0} = \frac{63.7(F_{y}\Delta_{u} - \Delta_{y}F_{u})}{F_{u}\Delta_{u}}$$
(5.2)

$$\beta_{eff} = k \beta_0 + 5 = \frac{63.7 k (F_y \Delta_u - \Delta_y F_u)}{F_u \Delta_u} + 5$$
 (5.3)

Donde:

- β_0 : Amortiguamiento histerético
- β_{eff} : Amortiguamiento efectivo viscoso
- *F_u*: Cortante ultimo (obtenido de la curva Pushover)
- F_{v} : Cortante de fluencia
- Δ_u : Desplazamiento ultimo
- Δ_{v} : Desplazamiento de fluencia

k: Factor de Modificación de Amortiguamiento (dependerá del tipo de estructura)

Tipo de	β_0	k		
Estructura				
	≤ 16.25	1.00		
Тіро А	≥ 16.25	$1.13 - \frac{0.51(F_y\Delta_u - \Delta_yF_u)}{F_u\Delta_u}$		
	≤ 25	0.67		
Тіро В	≥ 25	$0.845 - \frac{0.446(F_y\Delta_u - \Delta_yF_u)}{F_u\Delta_u}$		
Tipo C	Cualquier valor	0.33		

Tabla 23. Valores del Factor de Modificación de Amortiguamiento. (ATC-40)

Tipo A: Estructura con buen comportamiento histerético.

Tipo B: Estructura con moderado comportamiento histerético.

Tipo C: Estructura con pobre comportamiento histerético.

El Espectro de Demanda debe estar en unidades de Aceleración-Desplazamiento para lo cual se utiliza la siguiente ecuación:

$$S_d = \frac{T^2}{4\pi^2} S_a$$
 (5.5)

Donde:

Sa: Eje Y del espectro elástico, en unidades de aceleración (m/s²).

Sd: Eje X del espectro elástico, en unidades de desplazamiento (m).

Una vez calculado el amortiguamiento viscoso efectivo, se hallan los coeficientes de reducción de desplazamiento y aceleración para finalmente obtener el Espectro de Demanda.

(5. 6)

α_A	Aceleración	84.1 % (Probabilidad	$4.38 - 1.04 \ln \beta_{eff}$
α_V	Velocidad	acumulada)	$3.38 - 0.67 \ln \beta_{eff}$
α_D	Desplazamiento	,	$2.73 - 0.45 \ln \beta_{eff}$
α_A	Aceleración	50 % (Probabilidad	$3.21 - 0.68 \ln \beta_{eff}$
α_V	Velocidad	acumulada)	$2.31 - 0.41 \ln \beta_{eff}$
α_D	Desplazamiento	· · · · · · ,	$1.82 - 0.27 \ln \beta_{eff}$

Tabla 24. Coeficiente de Reducción de desplazamiento, aceleración y velocidad. Newmark &
Hall (1982)

El Espectro de Demanda será reducido de la siguiente manera:

$$SRa = \frac{\alpha_A S_a}{\alpha_A (5\%)}$$
(5.7)

$$SRd = \frac{\alpha_D S_d}{\alpha_{D(5\%)}}$$
(5.8)

Se calculó el Método del Espectro de Capacidad para los tres tipos de estructuras, Tipo A, B y C. Se consideraron los dos casos mencionados en la sección 4. 2

En Anexos 6 se muestran las gráficas obtenidas. Los resultados son los siguientes:

0.4

PRIMER CASO: No confinado adecuadamente

βeff					
EJE X	TIPO A	TIPO B	TIPO C		
Eje 1	27.15	20.76	12.76		
Eje 2	27.00	20.63	12.70		
Eje 4	27.16	20.77	12.77		
Eje 5	27.14	20.75	12.76		
EJE Y	TIPO A	TIPO B	TIPO C		
Eje A	30.35	23.17	14.24		
Eje B	30.97	23.57	14.54		
Eje C	26.74	20.39	12.58		
Eje D	22.76	17.07	10.95		

Tabla 25. Valores de amortiguamiento efectivo para pórticos "Nonconforming transverse reinforcement".

		TIPO A	TIPO B	TIPO C
	SRA	0.46	0.54	0.70
Eje 1	SRV	0.58	0.65	0.77
	SRD	0.67	0.72	0.81
	SRA	0.46	0.54	0.70
Eje 2	SRV	0.58	0.65	0.77
	SRD	0.67	0.72	0.82
	SRA	0.46	0.54	0.70
Eje 4	SRV	0.58	0.65	0.77
	SRD	0.67	0.72	0.81
Eje 5	SRA	0.46	0.54	0.70
	SRV	0.58	0.65	0.77
	SRD	0.67	0.72	0.81

		TIPO A	TIPO B	TIPO C
	SRA	0.42	0.51	0.66
Eje A	SRV	0.55	0.62	0.74
	SRD	0.65	0.70	0.79
Eje B	SRA	0.41	0.50	0.66
	SRV	0.55	0.61	0.73
	SRD	0.64	0.70	0.79
	SRA	0.46	0.55	0.70
Eje C	SRV	0.58	0.65	0.77
	SRD	0.67	0.72	0.82
	SRA	0.51	0.60	0.75
Eje D	SRV	0.62	0.69	0.81
	SRD	0.70	0.76	0.84

 Tabla 26. Coeficientes de reducción del Espectro de Demanda de aceleración, velocidad y desplazamiento. "Nonconforming transverse reinforcement"

	۱	3eff								
EJE X	TIPO A	TIPO B	TIPO C							
Eje 1	35.21	26.29	16.82							
Eje 2	34.69	25.97	16.52							
Eje 4	34.63	25.93	16.49							
Eje 5	35.13	26.24	16.77							
	l	3eff								
EJE Y	TIPO A	TIPO B	TIPO C							
Eje A	36.17	26.87	17.41							
Eje B	35.06	26.19	16.73							
Eje C	34.48	25.83	16.40							
Eje D	30.74	23.42	14.42							

SEGUNDO CASO: Confinado adecuadamente

Tabla 27. Valores de amortiguamiento efectivo para pórticos "Conforming transverse reinforcement".

		TIPO A	TIPO B	TIPO C
	SRA	0.37	0.47	0.61
Eje 1	SRV	0.52	0.59	0.70
	SRD	0.62	0.67	0.76
	SRA	0.38	0.47	0.61
Eje 2	SRV	0.52	0.59	0.70
	SRD	0.62	0.68	0.76
	SRA	0.38	0.47	0.62
Eje 4	SRV	0.52	0.59	0.70
	SRD	0.62	0.68	0.76
	SRA	0.37	0.47	0.61
Eje 5	SRV	0.52	0.59	0.70
	SRD	0.62	0.67	0.76

		TIPO A	TIPO B	TIPO C
	SRA	0.36	0.46	0.60
Eje A	SRV	0.51	0.58	0.69
	SRD	0.61	0.67	0.75
	SRA	0.37	0.47	0.61
Eje B	SRV	0.52	0.59	0.70
	SRD	0.62	0.68	0.76
	SRA	0.38	0.47	0.62
Eje C	SRV	0.52	0.59	0.70
	SRD	0.62	0.68	0.77
	SRA	0.42	0.50	0.66
Eje D	SRV	0.55	0.62	0.74
	SRD	0.64	0.70	0.79

Tabla 28. Coeficientes de reducción del Espectro de Demanda de aceleración, velocidad ydesplazamiento. " Conforming transverse reinforcement"

CAPÍTULO VI

6. CÁLCULO DEL FACTOR DE REDUCCIÓN DE FUERZAS SÍSMICAS (R)

El Factor de Reducción de Fuerzas Sísmicas R se obtuvo en función de tres variables (ATC-19): Factor de Ductilidad (R_{μ}), Factor de Sobre-resistencia (R_{Ω}), Factor de Redundancia (R_{R}).

$$R = (R_{\mu})(R_{\rm R})(R_{\Omega})$$

6. 1. CÁLCULO DEL FACTOR DE DUCTILIDAD (R_{μ})

Para el cálculo del Factor de ductilidad, fue necesaria la obtención de la curva Pushover. (Sección 5. 1)

Se usaron los parámetros planteados por Newmark & Hall (1982) mostrados en la sección 2.2. 2. Los resultados obtenidos son los siguientes:

PRIMER CASO: No confinado adecuadamente

∆u (m)	∆ y (m)	μ	T (seg)	Rμ
0.244	0.12	2.03	1.068	2.03
0.253	0.12	2.10	1.233	2.10
0.256	0.12	2.13	1.299	2.13
0.246	0.12	2.05	1.102	2.05
-	Δ u (m) 0.244 0.253 0.256 0.246	Δu (m) Δy (m) 0.244 0.12 0.253 0.12 0.256 0.12 0.246 0.12	Δu (m) Δy (m) μ 0.244 0.12 2.03 0.253 0.12 2.10 0.256 0.12 2.13 0.246 0.12 2.05	Δu (m) Δy (m) μ T (seg) 0.244 0.12 2.03 1.068 0.253 0.12 2.10 1.233 0.256 0.12 2.13 1.299 0.246 0.12 2.05 1.102

EJE Y	∆u (m)	∆ y (m)	μ	T (seg)	Rμ
Eje A	0.194	0.08	2.59	0.920	2.59
Eje B	0.271	0.10	2.71	1.375	2.71
Eje C	0.283	0.10	2.83	1.545	2.83
Eje D	0.281	0.10	2.81	1.520	2.81

 Tabla 29. Valores obtenidos del Factor R de ductilidad para estructura que no está adecuadamente confinada.

EJE X	∆u (m)	∆ y (m)	μ	T (seg)	Rμ
Eje 1	0.447	0.11	4.06	1.03	4.06
Eje 2	0.457	0.11	4.16	1.19	4.16
Eje 4	0.461	0.11	4.19	1.25	4.19
Eje 5	0.450	0.11	4.09	1.06	4.09

SEGUNDO CASO: Confinado adecuadamente

EJE Y	∆u (m)	∆ y (m)	μ	T (seg)	Rμ
Eje A	0.349	0.08	4.37	0.880	4.37
Eje B	0.416	0.10	4.38	1.375	4.38
Eje C	0.462	0.11	4.40	1.545	4.40
Eje D	0.460	0.11	4.18	1.460	4.18

 Tabla 30. Valores obtenidos del Factor R de ductilidad para estructura adecuadamente confinada.

6. 2. CÁLCULO DEL FACTOR DE SOBRE-RESISTENCIA (R_{Ω})

Para el cálculo del Factor de Sobre-resistencia (R_{Ω}) se empleó la siguiente ecuación:

$$R_{\Omega} = \frac{V_U}{V_D}$$

Donde:

V_U: Cortante último obtenido de la curva Pushover.

 V_D : Cortante de diseño

Para calcular el V_D se empleó el Método del Espectro de Capacidad, el cual relaciona el Espectro de Capacidad con el Espectro de Demanda. El punto donde se intersectan las curvas, es conocido como punto de demanda con su respectivo cortante, que corresponde al cortante de diseño. (Fig. 43)

Fig. 43. Descripción del Método del Espectro de Capacidad para determinar el punto de demanda. VIERA (2004)

Los resultados obtenidos del Factor R_{Ω} , son los siguientes:

	EJE A			EJE B			EJE C			EJE D		
	TIPO	TIPO	TIPO									
	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Vu	119.	119.	119.	118.	118.	118.	96.0	96.0	96.0	111.	111.	111.
(Ton)	89	89	89	90	90	90	0	0	0	86	86	86
Vd	119.											
(Ton)	64	-	-	-	-	-	-	-	-	-	-	-
Rs	1.00	-	-	-	-	-	-	-	-	-	-	-

PRIMER CASO: No confinado adecuadamente

	EJE 5			EJE 4			EJE 2				EJE 1		
	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	
	Α	В	С	Α	В	С	Α	В	С	Α	В	С	
Vu	124.	124.	124.	126.	126.	126.	125.	125.	125.	124.	124.	124.	
(Ton)	82	82	82	06	06	06	64	64	64	61	61	61	
Vd	118.	121.		123.		135.	127.			120.	123.		
(Ton)	28	74	-	53	-	04	22	-	-	88	05	-	
Rs	1.06	1.03	-	1.02	-	-	0.99	-	-	1.03	1.01	-	

 Tabla 31. Resultados del factor de Sobre-resistencia para pórticos "Nonconforming transverse reinforcement".

	EJE A			EJE B			EJE C			EJE D		
	TIPO	TIPO	TIPO									
	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Vu	128.	128.	128.	125.	125.	125.	102.	102.	102.	118.	118.	118.
(Ton)	22	22	22	94	94	94	08	08	08	58	58	58
Vd	118.	121.	122.	125.	127.		101.	106.		115.	118.	
(Ton)	51	16	29	74	69	-	09	60	-	22	53	-
Rs	1.08	1.06	1.05	1.00	0.99	-	1.01	0.96	-	1.03	1.00	-

SEGUNDO CASO: Confinado adecuadamente

	EJE 5			EJE 4			EJE 2				EJE 1		
	ΤΙΡΟ	ΤΙΡΟ	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	TIPO	ΤΙΡΟ	TIPO	
	Α	В	С	Α	В	С	Α	В	С	Α	В	С	
Vu	132.	132.	132.	134.	134.	134.	133.	133.	133.	132.	132.	132.	
(Ton)	87	87	87	67	67	67	99	99	99	61	61	61	
Vd	116.	121.	121.	124.	127.	135.	121.	126.	128.	118.	123.	129.	
(Ton)	44	36	74	05	19	04	05	28	65	71	78	20	
Rs	1.14	1.09	1.09	1.09	1.06	1.00	1.11	1.06	1.04	1.12	1.07	1.03	

 Tabla 32. Resultados del factor de Sobre-resistencia para pórticos "Conforming transverse reinforcement".

Los casilleros que se encuentran en blanco y no presentan un registro del cortante de diseño y del Factor de sobre-resistencia, indican que la estructura colapsa, es decir el Espectro de Capacidad no logra intersectar al Espectro de Demanda.

En la Fig. 44 el Espectro de Capacidad intersecta al Espectro de Demanda cuando la estructura es TIPO A y TIPO B, cuando la estructura es TIPO C colapsa. (Ver Anexos 6)

Fig. 44. Pórtico Eje 1. Primer caso: No confinado adecuadamente

6. 3. CÁLCULO DEL FACTOR DE REDUNDANCIA (R_R)

El factor de reducción por redundancia mide la capacidad que tiene una estructura de incursionar en el rango inelástico y relaciona el cortante basal máximo $V_{\rm U}$ con respecto al cortante basal alcanzado en el momento que se forma la primera articulación plástica. (ATC-19)

$$R_{\rm R} = \frac{V_U}{V_1}$$

Donde:

 V_1 : Cortante cuando se forma la primera rótula, se obtuvo con la ayuda del programa SAP 2000.

 V_U : Cortante de basal último obtenido de la curva Pushover.

nte
n

EJE X	Vu (Ton)	V1 (Ton)	Rr
Eje 1	124.61	84.00	1.48
Eje 2	125.64	84.76	1.48
Eje 4	126.06	85.17	1.48
Eje 5	124.82	84.12	1.48

EJE Y	Vu (Ton) V1 (Ton)		Rr
Eje A	119.89	77.02	1.56
Eje B	118.90	73.47	1.62
Eje C	96.00	58.60	1.64
Eje D	111.86	68.78	1.63

 Tabla 33. Resultados del Factor de Redundancia para pórticos "Nonconforming transverse reinforcement".

SEGUNDO CASO: Confinado adecuadamente	

EJE X	Vu (Ton)	V1 (Ton)	Rr
Eje 1	132.61	84.50	1.57
Eje 2	133.99	84.76	1.58
Eje 4	134.67	85.66	1.57
Eje 5	132.87	84.62	1.57

EJE Y	Vu (Ton)	V1 (Ton)	Rr
Eje A	128.22	77.51	1.65
Eje B	125.94	73.96	1.70
Eje C	102.08	59.02	1.73
Eje D	118.58	69.16	1.71

Tabla 34. Resultados del Factor de Redundancia para pórticos "Conforming transverse reinforcement".

6. 4. RESULTADOS OBTENIDOS DEL FACTOR DE REDUCCIÓN R

ΤΙΡΟ Α						
EJE X	EJE X Rµ Rs Rr R					
Eje 1	2.03	1.03	1.48	3.11		
Eje 2	2.10	0.99	1.48	3.08		
Eje 4	2.13	1.02	1.48	3.22		
Eje 5	2.05	1.06	1.48	3.21		

PRIMER CASO: No confinado adecuadamente

ΤΙΡΟ Β						
EJE X	EJE X Rµ Rs Rr R					
Eje 1	2.03	1.01	1.48	3.05		
Eje 2	2.10	-	1.48	COLAPSO		
Eje 4	2.13	-	1.48	COLAPSO		
Eje 5	2.05	1.03	1.48	3.12		

TIPO C					
EJE X	Rµ Rs Rr R				
Eje 1	2.03	-	1.48	COLAPSO	
Eje 2	2.10	-	1.48	COLAPSO	
Eje 4	2.13	-	1.48	COLAPSO	
Eje 5	2.05	-	1.48	COLAPSO	

ΤΙΡΟ Α							
	Rµ Rs Rr R						
Eje A	2.59	1.00	1.56	4.04			
Eje B	2.71	-	1.62	COLAPSO			
Eje C	2.83	-	1.64	COLAPSO			
Eje D	2.81	-	1.63	COLAPSO			

	TIPO B, C					
Rµ Rs Rr R						
Eje A	2.59	-	1.56	COLAPSO		
Eje B	2.71	-	1.62	COLAPSO		
Eje C	2.83	-	1.64	COLAPSO		
Eje D	2.81	-	1.63	COLAPSO		

Tabla 35. Resumen de los factores R calculados para pórticos "NonConforming transverse reinforcement".

SEGUNDO CASO: Confinado adecuadamente

ΤΙΡΟ Α						
EJE X	Rμ	Rs	Rr	R		
Eje 1	4.06	1.12	1.57	7.12		
Eje 2	4.16	1.11	1.58	7.27		
Eje 4	4.19	1.09	1.57	7.16		
Eje 5	4.09	1.14	1.57	7.33		

TIPO B							
EJE X	Rμ	Rs	Rr	R			
Eje 1	4.06	1.07	1.57	6.83			
Eje 2	4.16	1.06	1.58	6.97			
Eje 4	4.19	1.06	1.57	6.98			
Eje 5	4.17	1.09	1.43	6.52			

TIPO C					
EJE X	Rμ	Rs	Rr	R	
Eje 1	4.06	1.03	1.57	6.54	
Eje 2	4.16	1.04	1.58	6.84	
Eje 4	4.19	1.00	1.57	6.57	
Eje 5	4.17	1.09	1.43	6.50	

TIPO A				
EJE Y	Rμ	Rs	Rr	R
Eje A	4.37	1.08	1.65	7.81
Eje B	4.38	1.00	1.70	7.48
Eje C	4.40	1.01	1.73	7.68
Eje D	4.18	1.03	1.71	7.37

TIPO B				
EJE Y	Rμ	Rs	Rr	R
Eje A	4.37	1.06	1.60	7.41
Eje B	4.38	0.99	1.70	7.36
Eje C	4.40	0.96	1.73	7.28
Eje D	4.18	1.00	1.71	7.17

TIPO C					
EJE Y	Rμ	Rs	Rr	R	
Eje A	4.37	1.05	1.60	7.34	
Eje B	4.38	-	1.70	COLAPSO	
Eje C	4.40	-	1.73	COLAPSO	
Eje D	4.18	-	1.71	COLAPSO	

 Tabla 36. Resumen de los factores R calculados para pórticos "Conforming transverse reinforcement".

CAPÍTULO VII

7. ANÁLISIS DE RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

7.1. RESULTADOS

PRIMER CASO: No confinado adecuadamente

 Para el primer caso denominado "Nonconforming transverse reinforcement" (NC), en los pórticos del Eje 1 y 5, el Espectro de Capacidad intersecta al Espectro de Demanda cuando la estructura es considerada TIPO A y TIPO B. (Fig. 45)

Fig. 45. Pórtico Eje 1 y Eje 5 ("Nonconforming transverse reinforcement")

 En las gráficas de los pórticos del Eje 2 y 4, el Espectro de Capacidad intersecta al Espectro de Demanda únicamente cuando se considera estructura TIPO A. (Fig. 46)

Fig. 46. Pórtico Eje 2 y Eje 4. ("Nonconforming transverse reinforcement")

 En el Eje Y, en la gráfica del Eje A, el Espectro de Capacidad intersecta al Espectro de Demanda cuando se considera una estructura TIPO A. (Fig. 47)

Fig. 47. Pórtico Eje A ("Nonconforming transverse reinforcement")
En los pórticos del Eje B, C y D, el Espectro de Capacidad no intersecta los Espectros de Demanda, lo cual indica que la estructura colapsa. (Fig. 48)

Fig. 48. Pórtico Eje B, Eje C y Eje D ("Nonconforming transverse reinforcement")

 En el Eje X, para los pórticos del Eje 1,2,4 y 5, el promedio del Factor R obtenido es igual a 3.15, cuando la estructura se considera TIPO A. Cuando la estructura es considerada TIPO B y C, los pórticos colapsan. (Fig. 45 y Fig. 46)

SEGUNDO CASO: Confinado adecuadamente

 Para el segundo caso denominado "Conforming transverse reinforcement" (C), en los pórticos del Eje 1, 2, 4 y 5, el Espectro de Capacidad intersecta al Espectro de Demanda cuando la estructura es considerada TIPO A, TIPO B y TIPO C. (Fig. 49 y Fig. 50)

Fig. 49. Pórtico Eje 1 y Eje 5 ("Conforming transverse reinforcement")

Fig. 50. Pórtico Eje 2 y Eje 4 ("Conforming transverse reinforcement")

 En el Eje Y, en la gráfica del Eje A, el Espectro de Capacidad intersecta al Espectro de Demanda cuando se considera una estructura TIPO A, B, C. (Fig. 51)

Fig. 51. Pórtico Eje A ("Conforming transverse reinforcement")

 En los pórticos del Eje B, C y D, el Espectro de Capacidad intersecta los Espectros de Demanda, cuando la estructura es considerada TIPO A y B. (Fig. 52)

Fig. 52. Pórtico Eje B, Eje C y Eje D ("Conforming transverse reinforcement")

- Para los pórticos del Eje 1,2,4 y 5, el promedio del Factor R obtenido es igual a 7.22, cuando la estructura es TIPO A.
- Cuando la estructura es TIPO B, el promedio del Factor R obtenido es igual a 6.82.
- Cuando la estructura es TIPO C, el promedio del Factor R obtenido es igual a 6.61
- Para los pórticos del Eje A, B, C y D, el promedio del Factor R obtenido es igual a 7.59, cuando la estructura es TIPO A.
- Cuando la estructura es TIPO B, el promedio del Factor R obtenido es igual a 7.30
- Cuando la estructura es TIPO C, los pórticos colapsan.
- Para la obtención del Factor R de ductilidad se usaron las ecuaciones propuestas por Newmark y Hall (1982).
- Debido a que el período de cada pórtico *T* es mayor que *T_c*, se consideró *R_μ* = μ
- El Factor R de sobre-resistencia fue calculado mediante el Método Espectro de Capacidad.
- Se realizó la reducción del espectro de Demanda, encontrando el amortiguamiento efectivo.

7. 2. CONCLUSIONES

- El amortiguamiento efectivo para una estructura TIPO A, es mayor que para la estructura TIPO B y C, por lo tanto se obtiene una mayor reducción del Espectro de Demanda para los pórticos TIPO A.
- El Factor de Sobre-resistencia obtenido para las estructuras TIPO A es mayor que para las de TIPO B y C.
- Para el segundo caso en donde los elementos estructurales de los pórticos están adecuadamente confinados, se obtuvo valores de sobre-resistencia mayores que el primer caso, en donde no se cumplen lo parámetros de confinamiento establecidos por el NEC-11.

- Para el primer caso considerado Nonconforming transverse reinforcement, debido a que la estructura no está adecuadamente confinada, la ductilidad obtenida es menor que la estructura que posee un confinamiento adecuado.
- Un adecuado confinamiento, permite que la estructura tenga mayor ductilidad, por lo tanto admite mayor deformación antes que alcance el esfuerzo máximo.
- Las deformaciones máximas obtenidas para la estructura adecuadamente confinada, son mayores que la estructura que no cumple con el confinamiento determinado por la NEC-11.
- Al diseñar los elementos estructurales con el confinamiento que determina la NEC-11, el Factor R obtenido se aproxima a los valores propuestos en el capítulo 2 de dicha norma. (Ver Tabla 5)
- El factor R varía dependiendo del tipo de estructura. Para las estructuras TIPO A se obtuvo un valor del Factor R mayor que las estructuras TIPO B y C.

7. 3. RECOMENDACIONES

- Para obtener un buen desempeño de una estructura de hormigón armado ante la acción de fuerzas sísmicas, es importante que los elementos estructurales posean un adecuado confinamiento.
- En zonas de alto riesgo sísmico, es fundamental otorgar a las estructuras la capacidad de disipar energía mediante deformaciones inelásticas.
- El diseñador debe tomar en cuenta los límites de confinamiento y espaciamiento entre estribos, propuestos por la NEC-11 y el ACI 318-11, para que la estructura posea una adecuada ductilidad. De esta manera, se evitará el colapso repentino de la estructura.
- El análisis no lineal de una estructura de hormigón armado, es una herramienta fundamental para verificar el Factor R.

 La obtención de la curva de capacidad nos permite comprobar que la estructura sea capaz de deformase lo suficiente antes de alcanzar el esfuerzo máximo. ANEXOS

Anexos 1

COLUMNA B4 (70X50)

Cálculo de Diagrama Momento – Curvatura

1) Se fija la carga axial que actúa en la columna.

 $P_T = 223.96 Ton$

Punto de fluencia ($\epsilon_s = 0.0021$)

 El valor de la deformación unitaria en la fibra extrema a tensión, para el punto de fluencia es igual a:

$$\varepsilon_y = \varepsilon_{s3} = 0.0021$$

3) Se propone un valor de k, para hallar la profundidad al eje neutro kd.

$$k = 0.49$$

$$kd = 21.98 \, cm$$

4) Se calculan las deformaciones unitarias, mediante relación de triángulos.

$$\frac{\varepsilon_c}{kd} = \frac{\varepsilon_{s3}}{d - kd}$$
$$\frac{\varepsilon_c}{21.98} = \frac{0.0021}{22.87}$$
$$\varepsilon_c = 0.0020$$

De igual manera se calculan las deformaciones unitarias en las fibras donde se encuentran las varillas longitudinales.

$$\varepsilon_{s1} = 0.0015$$
$$\varepsilon_{s2} = 0.0003$$

5) Se calculan los esfuerzos producidos por el acero.

Según la curva de esfuerzo-deformación, calculada mediante el modelo de Park & Paulay; de las ecuaciones (3.33) y (3. 34) se obtiene:

Cuando $\varepsilon_s \leq \varepsilon_v$:

$$f_{s} = \varepsilon_{s} E_{s}$$

$$f_{s1} = (0.0015)(2030000) = 3045 \frac{Kg}{cm^{2}}$$

$$f_{s2} = (0.0003)(2030000) = 609 \frac{Kg}{cm^{2}}$$

Cuando $\varepsilon_y \leq \varepsilon_s \leq \varepsilon_{sh}$:

$$f_{s3} = f_y = 4200 \ \frac{Kg}{cm^2}$$

6) Se calculan las fuerzas de tensión y compresión producidas por el acero.

$$C_{S1} = f_{s1} A_{s1}$$

 $C_{S1} = (3045)(19.63) = 59773 Kg$

$$T_{S2} = (609)(9.82) = 5980 Kg$$

 $T_{S3} = (4200)(19.63) = 82446 Kg$

7) Se calculan las fuerzas de compresión producidas por el hormigón.

$$C_c = \propto kd * b$$

De la curva esfuerzo-deformación calculada mediante el modelo de Mander, se calcula el factor \propto , que corresponde al área acumulada bajo la curva del hormigón no confinada, hasta la deformación en la fibra extrema a compresión; el valor obtenido del área bajo la curva se divide entre ε para llevarlo a escala en la sección kd * b

$$C_c = (167.18)(21.98)(70) = 257223 Kg$$

 Se suman las fuerzas de tensión y compresión producidas por el acero y la fuerza de compresión producida por el hormigón, se compara con la carga axial fija.

$$P = C_{S1} - T_{S2} - T_{S3} + C_c = 228.57 \text{ Ton} \approx 223.96 \text{ Ton}$$

 Se calculan los momentos producidos por cada una de las fuerzas, desde el centroide de la sección.

$$M = (59.773)(19.85) + (82.446)(19.85) + (257.223)(3.02 + (0.62 * 21.98))$$
$$= 71.05 Ton - m$$

El momento producido por la fuerza de compresión del hormigón se obtiene mediante:

$$M = \delta kd * C_c$$

De la curva esfuerzo-deformación calculada mediante el modelo de Mander (1988), se calcula el factor δ , el cual corresponde al centroide del área bajo la curva. Los valores calculados de \propto y δ se encuentran en el Anexo 1.1

10) Se obtiene la curvatura

$$\varphi = \frac{\varepsilon_c}{kd} = \frac{0.0020}{21.98} = 9.10 \ x \ 10^{-3} \ \frac{rad}{seg}$$

Segundo punto $(\epsilon_c~=0.001)$

Se propone $\varepsilon_c = 0.001$.

Asumiendo un valor de k = 0.65, se obtiene la profundidad del eje neutro $kd = 29.15 \ cm$

Siguiendo los pasos mostrados anteriormente para el punto de fluencia se obtuvo:

- Deformación unitaria

$$\frac{0.0010}{29.15} = \frac{\varepsilon_{s1}}{24}$$

$$\varepsilon_{s1} = 0.0008$$

 $\varepsilon_{s2} = 0.0001$
 $\varepsilon_{s3} = 0.0005$

- Esfuerzos

$$f_{s2} = (0.0008)(2030000) = 1624 \frac{Kg}{cm^2}$$
$$f_{s2} = (0.0001)(2030000) = 203 \frac{Kg}{cm^2}$$
$$f_{s2} = (0.0005)(2030000) = 1015 \frac{Kg}{cm^2}$$

- Fuerzas en el acero

$$C_{S1} = (1624)(19.63) = 31879 Kg$$

 $C_{S2} = (203)(9.82) = 1994 Kg$
 $T_{S3} = (1015)(19.63) = 19925 Kg$

- Fuerzas en el hormigón

Se consideran tres fuerzas que actúan en el hormigón debido al efecto confinado (α_c) y no confinado (α_{nc})

$$C_{c1} = \alpha_{nc} * kd * b$$

$$C_{c2} = \alpha_{nc} * (kd - rec) * (b - 2rec)$$

$$C_{c3} = \alpha_{c} * (kd - rec) * (b - 2rec)$$

$$C_{c1} = (106.84)(29.15)(70) = 218007 Kg$$

$$C_{c2} = (97.87)(25.65)(63) = 158153Kg$$

$$C_{c3} = (93.24)(25.65)(63) = 150671 Kg$$

- Fuerza total

$$P = C_{S1} + C_{S2} - T_{S3} + C_{c1} - C_{c2} + C_{c3} = 225.34 \text{ Ton} \approx 223.96 \text{ Ton}$$

- Momento

$$M = (31.879)(19.85) + (19.925)(19.85) + (218.007)((0.65 * 29.15) - 4.15)$$
$$- (158.153)((0.66 * 25.65) - 4.15) + (150.671)((0.65 * 25.65))$$
$$- 4.15) = 41.20 Ton - m$$

- Curvatura

$$\varphi = \frac{0.0030}{29.15} = 3.43 \ x \ 10^{-3} \ \frac{rad}{seg}$$

Tercer punto ($\epsilon_c = 0.003$)

Se propone $\varepsilon_c = 0.003$.

Asumiendo un valor de k = 0.42, se obtiene la profundidad del eje neutro kd = 18.71 cm

Siguiendo los pasos mostrados anteriormente para el punto de fluencia se obtuvo:

- Deformación unitaria

$$\frac{0.0030}{18.71} = \frac{\varepsilon_{s1}}{13.56}$$
$$\varepsilon_{s1} = 0.0022$$
$$\varepsilon_{s2} = 0.0010$$

$$\varepsilon_{s3} = 0.0042$$

- Esfuerzos

$$f_{s1} = f_y = 4200 \frac{Kg}{cm^2}$$
$$f_{s2} = (0.0010)(2030000) = 2030 \frac{Kg}{cm^2}$$
$$f_{s3} = f_y = 4200 \frac{Kg}{cm^2}$$

- Fuerzas en el acero

$$C_{S1} = (4200)(19.63) = 82446 \ Kg$$

 $T_{S2} = (2030)(9.82) = 19935 \ Kg$
 $T_{S3} = (4200)(19.63) = 82446 \ Kg$

- Fuerzas en el hormigón

Se consideran tres fuerzas que actúan en el hormigón debido al efecto confinado (α_c) y no confinado (α_{nc})

$$C_{c1} = \alpha_{nc} * kd * b$$

$$C_{c2} = \alpha_{nc} * (kd - rec) * (b - 2rec)$$

$$C_{c3} = \alpha_{c} * (kd - rec) * (b - 2rec)$$

$$C_{c1} = (185.47)(18.71)(70) = 242910 Kg$$

$$C_{c2} = 178.20(15.21)(63) = 170757Kg$$

$$C_{c3} = 180.67 (15.21)(63) = 173123Kg$$

- Fuerza total

$$P = C_{S1} - T_{S2} - T_{S3} + C_{c1} - C_{c2} + C_{c3} = 225.34 \text{ Ton} \approx 223.96 \text{ Ton}$$

- Momento

$$M = (82.446)(19.85) + (82.446)(19.85) + (242.910)(6.29 + (0.58 * 18.71))$$
$$- (170.757)(6.29 + (0.60 * 15.21)) + (173.123)(6.29$$
$$+ (0.62 * 15.21)) = 75.25 Ton - m$$

- Curvatura

$$\varphi = \frac{0.0030}{18.71} = 16.03 \ x \ 10^{-3} \ \frac{rad}{seg}$$

Cuarto punto ($\epsilon_c = 0.005$)

Se propone $\varepsilon_c = 0.005$.

Asumiendo un valor de k = 0.43, se obtiene la profundidad del eje neutro $kd = 19.30 \ cm$

- Deformación unitaria

$$\frac{0.0050}{19.30} = \frac{\varepsilon_{s1}}{14.15}$$
$$\varepsilon_{s1} = 0.0037$$
$$\varepsilon_{s2} = 0.0015$$

$$\varepsilon_{s3} = 0.0066$$

- Esfuerzos

$$f_{s1} = 4200 \frac{Kg}{cm^2}$$
$$f_{s2} = (0.0015)(2030000) = 3045 \frac{Kg}{cm^2}$$
$$f_{s3} = 4200 \frac{Kg}{cm^2}$$

- Fuerzas en el acero

$$C_{S1} = (4200)(19.63) = 82446 \ Kg$$

 $T_{S2} = (3045)(9.82) = 29902 \ Kg$
 $T_{S3} = (4200)(19.63) = 82446 \ Kg$

- Fuerzas en el hormigón

 $C_{c1} = (160.12)(19.30)(70) = 216322 Kg$ $C_{c2} = 183.28(15.80)(63) = 182436 Kg$ $C_{c3} = 218.09 (15.80)(63) = 217086 Kg$

- Fuerza total

 $P = C_{S1} - T_{S2} - T_{S3} + C_{c1} - C_{c2} + C_{c3} = 221.07 \text{ Ton} \approx 223.96 \text{ Ton}$

- Momento

$$M = (82.446)(19.85) + (82.446)(19.85) + (216.322)(5.70 + (0.47 * 19.30))$$
$$- (182.44)(5.70 + (0.54 * 15.80)) + (217.09)(5.70)$$
$$+ (0.59 * 15.80)) = 71.33 Ton - m$$

- Curvatura

$$\varphi = \frac{0.0050}{19.30} = 25.91 \ x \ 10^{-3} \ \frac{rad}{seg}$$

Quinto punto $(\epsilon_c\,=0.\,010)$

Se propone $\varepsilon_c = 0.010$.

Asumiendo un valor de k = 0.46, se obtiene la profundidad del eje neutro $kd = 20.70 \ cm$

- Deformación unitaria

$$\frac{0.010}{20.70} = \frac{\varepsilon_{s1}}{15.55}$$
$$\varepsilon_{s1} = 0.0075$$
$$\varepsilon_{s2} = 0.0021$$
$$\varepsilon_{s3} = 0.0117$$

- Esfuerzos

$$f_{s1} = f_y = 4200 \frac{Kg}{cm^2}$$
$$f_{s2} = 4200 \frac{Kg}{cm^2}$$

Para calcular el valor de f_{s3} , debido a que la deformación unitaria producida en esta fibra se encuentra en la rama de endurecimiento por deformación, se usarán las ecuaciones (3.35), (3. 36), (3.37) propuestas por el modelo de Park & Paulay.

Cuando $\varepsilon_{sh} \leq \varepsilon_s \leq \varepsilon_{su}$:

$$m = \frac{\left(\frac{5600}{4200}\right)(30(0.1) + 1)^2 - 60(0.1) - 1}{15(0.1)^2} = 95.56$$

r = 0.1100 - 0.0100 = 0.1000

$$f_{s} = 4200 \left[\frac{95.56(0.0117 - 0.0100) + 2}{60(0.0117 - 0.0100) + 2} + \frac{(0.0117 - 0.0100)(60 - 95.56)}{2(30(0.10) + 1)^{2}} \right]$$
$$f_{s3} = 4291 \frac{Kg}{cm^{2}}$$

- Fuerzas en el acero

$$C_{S1} = (4200)(19.63) = 82446 Kg$$

 $T_{S2} = (4200)(9.82) = 41244 Kg$
 $T_{S3} = (4291)(19.63) = 84232 Kg$

- Fuerzas en el hormigón

$$C_{c1} = (80.06)(20.70)(70) = 116007 Kg$$

 $C_{c2} = 96.46(17.20)(63) = 104524 Kg$
 $C_{c3} = 234.62 (17.20)(63) = 254234 Kg$

- Fuerza total

$$P = C_{S1} - T_{S2} - T_{S3} + C_{c1} - C_{c2} + C_{c3} = 222.69 \text{ Ton} \approx 223.96 \text{ Ton}$$

- Momento

$$M = (82.446)(19.85) + (84.232)(19.85) + (116.007)(4.30 + (0.23 * 20.70))$$
$$- (104.524)(4.30 + (0.28 * 17.20)) + (254.234)(4.30)$$
$$+ (0.53 * 17.20)) = 68.18 Ton - m$$

- Curvatura

$$\varphi = \frac{0.0100}{20.70} = 48.31 \ x \ 10^{-3} \ \frac{rad}{seg}$$

Sexto punto $(\epsilon_c = 0.015)$

Se propone $\varepsilon_c = 0.0150$.

Asumiendo un valor de k = 0.49, se obtiene la profundidad del eje neutro $kd = 21.90 \ cm$

- Deformación unitaria

$$\frac{0.0150}{21.90} = \frac{\varepsilon_{s1}}{16.75}$$

$$\varepsilon_{s1} = 0.0115$$

 $\varepsilon_{s2} = 0.0021$
 $\varepsilon_{s3} = 0.0157$

- Esfuerzos

$$f_{s1} = 4278 \frac{Kg}{cm^2}$$
$$f_{s2} = 4200 \frac{Kg}{cm^2}$$

$$f_{s3} = 4520 \ \frac{Kg}{cm^2}$$

- Fuerzas en el acero

$$C_{S1} = (4278)(19.63) = 83977 \ Kg$$

 $T_{S2} = (4200)(9.82) = 41244 \ Kg$
 $T_{S3} = (4520)(19.63) = 88728 \ Kg$

- Fuerzas en el hormigón

$$C_{c1} = (53.37)(21.90)(70) = 81816 Kg$$

 $C_{c2} = 63.54(18.40)(63) = 73656 Kg$
 $C_{c3} = 224.96 (18.40)(63) = 260774 Kg$

- Fuerza total

$$P = C_{S1} - T_{S2} - T_{S3} + C_{c1} - C_{c2} + C_{c3} = 222.94 \text{ Ton} \approx 223.96 \text{ Ton}$$

- Momento

$$M = (83.977)(19.85) + (88.728)(19.85) + (81.816)(3.10 + (0.16 * 21.90))$$
$$- (73.656)(3.10 + (0.19 * 18.40))$$
$$+ (224.96)(3.10 + (0.50 * 18.40)) = 62.50Ton - m$$

- Curvatura

$$\varphi = \frac{0.0150}{21.90} = 68.49 \ x \ 10^{-3} \ \frac{rad}{seg}$$

Séptimo punto $(\epsilon_c\,=0.\,018)$

Se propone $\varepsilon_c = 0.0180$. Asumiendo un valor de k = 0.50, se obtiene la profundidad del eje neutro $kd = 22.43 \ cm$

- Deformación unitaria

$$\frac{0.0180}{22.43} = \frac{\varepsilon_{s1}}{17.28}$$
$$\varepsilon_{s1} = 0.0139$$
$$\varepsilon_{s2} = 0.0021$$

 $\varepsilon_{s3} = 0.0180$

$$f_{s1} = 4424 \frac{Kg}{cm^2}$$
$$f_{s2} = 4200 \frac{Kg}{cm^2}$$
$$f_{s3} = 4630 \frac{Kg}{cm^2}$$

- Fuerzas en el acero

$$C_{S1} = (4424)(19.63) = 86843 Kg$$

 $T_{S2} = (4200)(9.82) = 41244 Kg$

$$T_{S3} = (4630)(19.63) = 90887 Kg$$

- Fuerzas en el hormigón

$$C_{c1} = (44.48)(22.43)(70) = 69838 Kg$$

 $C_{c2} = 52.67(18.93)(63) = 62814Kg$
 $C_{c3} = 217.41 (18.93)(63) = 259281 Kg$

- Fuerza total

 $P = C_{S1} - T_{S2} - T_{S3} + C_{c1} - C_{c2} + C_{c3} = 221.02 \text{ Ton } \approx 223.96 \text{ Ton}$

- Momento

$$M = (86.843)(19.85) + (90.887)(19.85) + (69.838)(2.57 + (0.13 * 22.43))$$
$$- (62.814)(2.57 + (0.15 * 18.93))$$
$$+ (259.281)(2.57 + (0.48 * 18.93)) = 65.99 Ton - m$$

- Curvatura

$$\varphi = \frac{0.0180}{22.43} = 80.25 \ x \ 10^{-3} \ \frac{rad}{seg}$$

COLUMNA B4 (50X70)

Propiedades de la sección transversal

$b_x =$	50.00 cm	Dimensión de la sección en X
$b_y =$	70.00 cm	Dimensión de la sección en Y
rec =	3.50 cm	Recubrimiento al CL. Del estribo.

$A = b_x b_y =$	3500 cm ²	Área de la sección
$b_{cx} = b_x - rec. =$	43.00 cm	Dimensión de la sección confinada en X
$b_{cy} = b_y - rec. =$	63.00 cm	Dimensión de la sección confinada en Y
$A_C = b_{cx}b_{cy} =$	$2709 \ cm^2$	Área de la sección confinada.

Acero de Refuerzo longitudinal

Fila 1: $A_{S1} = 3 \phi 25 = 14.73 cm^2$ Fila 2: $A_{S2} = 2 \phi 25 = 9.82 cm^2$ Fila 3: $A_{S3} = 2 \phi 25 = 9.82 cm^2$ Fila 4: $A_{S3} = 3 \phi 25 = 14.73 cm^2$

$$A_{ST} = A_{S1} + A_{S2} + A_{S3} + A_{S4} = 49.09 \ cm^2 \quad \text{Årea de refuerzo longitudinal}$$
$$\rho_{cc} = \frac{A_{ST}}{A_{cc}} = 1.81 \ \% \qquad \text{Cuantía de refuerzo}$$

longitudinal confinada

Diámetro del estribo

Número de ramas en X.

Número de ramas en Y

Acero de Refuerzo Transversal

$$\phi_{est} = 8 mm$$

$$s = 150 mm$$
 Espaciamiento longitudinal

$$N_{RX} = 4$$

$$N_{Ry} = 3.5$$

$$A_{sx} = \frac{\pi \ (0.8)^2}{4} \ (N_{RX}) = 2.01 \ cm^2$$

$$\rho_x = \frac{A_{sx}}{s b_{cy}} = 0.21 \%$$

$$A_{sy} = \frac{\pi \ (0.8)^2}{4} \ (N_{RY}) = \frac{1.76 \ cm}{4}$$

$$\rho_y = \frac{A_{sy}}{s \ b_{cx}} = 0.2$$

$$\rho_s = \rho_x + \rho_y = 0.49\%$$

Cuantía de acero transversal confinado en X

Área del refuerzo transversal en X

Espaciamiento libre longitudinal

0.49 % Cuantía de acero transversal confinado

Propiedades del Hormigón Confinado

A partir del Modelo de Mander (1988) se obtuvo:

$$k_e = 0.6564$$

$$\begin{array}{ll} f'_{lx} = f_y \ k_e \ \rho_x = \\ f'_{ly} = f_y \ k_e \ \rho_y = \\ \hline f'_{ly} = f_y \ k_e \ \rho_y = \\ \hline f'_{co} = \\ \hline f'_{lv} = \\ \hline f'_{co} = \\ \hline f'_{lv} = \\$$

El factor de esfuerzo confinado obtenido es $K = \frac{f'_{cc}}{f'_{co}} = 1.15.$

Las propiedades del acero de refuerzo, del hormigón no confinado y confinado, son iguales a las descritas en el ejemplo anterior de esta columna.

Cálculo de Diagrama Momento – Curvatura.

Primer punto ($\epsilon_c = 0.001$)

Se propone $\varepsilon_c = 0.001$

Asumiendo un valor de k = 0.63, se obtiene la profundidad del eje

neutro $kd = 40.72 \ cm$

Defor uni	mación itaria	Área de (cn	el acero n2)	Esfu (kg/	erzo cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0009	As1	14.73	fs1	1773	Cs1	26120	29.85	7.80
εs2	0.0004	As2	9.82	fs2	781	Cs2	7669	9.95	0.76
εs3	0.0001	As3	9.82	fs3	211	Ts3	2071	9.95	0.21
εs4	0.0006	As4	14.73	fs4	1203	Ts4	17721	29.85	5.29

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	2035.92	106.84	Cc1	217518	0.65	26.47	20.75	45.13
Ac2	1600.39	97.87	Cc2	156631	0.66	24.56	18.85	29.52
Ac3	1600.39	93.24	Cc3	149221	0.65	24.19	18.47	27.57

Ptotal	224.10	Ton		
Mtotal	57.24	Ton-m		
φ	2.46	x10^3 rad/m		

Punto de fluencia ($\,\epsilon_c=0.\,0021)$

Se propone $\varepsilon_c = 0.021$ Asumiendo un valor de k = 0.48, se obtiene la profundidad del eje

neutro kd = 31.13cm

Defor un	mación itaria	Área de (cr	el acero n2)	Esfu (kg/d	erzo cm2)	Fuerz	Fuerza del acero (kg)		M (Ton-m)
εs1	0.0016	As1	14.73	fs1	3219	Cs1	47414	29.85	14.15
εs2	0.0004	As2	9.82	fs2	753	Cs2	7394	9.95	0.74
es3	0.0008	As3	9.82	fs3	1713	Ts3	16814	9.95	1.67
εs4	0.00206	As4	14.73	fs4	4178	Ts4	61548	29.85	18.37

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1556.40	163.39	Cc1	254300	0.62	19.30	23.17	58.92
Ac2	1188.00	154.43	Cc2	183463	0.63	17.41	21.28	39.04
Ac3	1188.00	148.99	Cc3	177001	0.63	17.41	21.28	37.66

Ptotal	224.28	Ton		
Mtotal	92.48	Ton-m		
φ	6.10	x10^3 rad/m		

Tercer punto ($\epsilon_c=0.003)$

Se propone $\varepsilon_c = 0.003$

Asumiendo un valor de k = 0.42, se obtiene la profundidad del eje

neutro kd = 27.24 cm

Defor uni	mación taria	Área de (cn	el acero n2)	Esfu (kg/	erzo cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0024	As1	14.73	fs1	4200	Cs1	61866	29.85	18.47
εs2	0.0002	As2	9.82	fs2	489	Cs2	4801	9.95	0.48
εs3	0.0020	As3	9.82	fs3	3961	Ts3	38882	9.95	3.87
εs4	0.0041	As4	14.73	fs4	4200	Ts4	61866	29.85	18.47

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1361.85	185.47	Cc1	252582	0.58	15.80	23.56	59.51
Ac2	1020.69	181.65	Cc2	185409	0.6	14.24	22.01	40.80
Ac3	1020.69	187.55	Cc3	191431	0.61	14.48	22.24	42.58

Ptotal	224.52	Ton		
Mtotal	102.57	Ton-m		
φ	11 01	x10^3		
	11.01	rad/m		

Cuarto punto ($\epsilon_c=0.005)$

Se propone $\varepsilon_c = 0.005$

Asumiendo un valor de k = 0.41, se obtiene la profundidad del eje

neutro kd = 26.75 cm

Defor uni	mación taria	Área de (cn	el acero n2)	Esfu (kg/	erzo cm2)	Fuerz	Fuerza del acero (kg)		M (Ton-m)
εs1	0.0040	As1	14.73	fs1	4200	Cs1	61866	29.85	18.47
εs2	0.0003	As2	9.82	fs2	643	Cs2	6316	9.95	0.63
εs3	0.0034	As3	9.82	fs3	4200	Cs3	41233	9.95	4.10
εs4	0.0071	As4	14.73	fs4	4200	Ts4	61866	29.85	18.47

Area de (ci	hormigón m2)	α	Fuerz hormig	Fuerzas del hormigón (kg)		δkd	z (cm)	M (Ton-m)
Ac1	1337.26	160.12	Cc1	214121	0.47	12.57	20.83	44.59
Ac2	999.54	178.5	Cc2	178418	0.52	12.09	20.34	36.29
Ac3	999.54	221.84	Cc3	221738	0.58	13.48	21.74	48.20

Ptotal	Ton		
Mtotal	98.16	Ton-m	
φ	18.70	x10^3 rad/m	

Quinto punto ($\epsilon_c=0.010)$

Se propone $\varepsilon_c = 0.0100$

Asumiendo un valor de k = 0.42, se obtiene la profundidad del eje

neutro kd = 27.14 cm

Defor uni	mación taria	Área de (cn	el acero n2)	Esfuerzo (kg/cm2)		Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0081	As1	14.73	fs1	4200	Cs1	61866	29.85	18.47
εs2	0.0008	As2	9.82	fs2	1561	Cs2	15326	9.95	1.52
εs3	0.0066	As3	9.82	fs3	4200	Cs3	41233	9.95	4.10
εs4	0.0139	As4	14.73	fs4	4423	Ts4	65157	29.85	19.45

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1356.84	80.06	Cc1	108629	0.23	6.24	14.10	15.32

Ac2	1016.38	92.02	Cc2	93528	0.27	6.38	14.25	13.32
Ac3	1016.38	234.13	Cc3	237966	0.53	12.53	20.39	48.52

Ptotal	223.87	Ton	
Mtotal	94.07	Ton-m	
φ	36.85	x10^3 rad/m	

Sexto punto ($\epsilon_c=0.015)$

Se propone $\varepsilon_c = 0.0150$

Asumiendo un valor de k = 0.43, se obtiene la profundidad del eje

neutro kd = 27.67 cm

Defor uni	mación taria	Área de (cn	el acero n2)	Esfu (kg/	Esfuerzo Fi (kg/cm2)		Fuerza del acero (kg)		M (Ton-m)
εs1	0.0122	As1	14.73	fs1	4323	Cs1	63682	29.85	19.01
εs2	0.0014	As2	9.82	fs2	2888	Cs2	28350	9.95	2.82
εs3	0.0094	As3	9.82	fs3	4200	Cs3	41233	9.95	4.10
εs4	0.0201	As4	14.73	fs4	4721	Ts4	69534	29.85	20.76

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1383.73	53.37	Cc1	73849	0.23	6.37	13.69	10.11
Ac2	1039.50	61.12	Cc2	63534	0.27	6.53	13.85	8.80
Ac3	1039.50	223.53	Cc3	232360	0.53	12.81	20.14	46.79

Ptotal	223.94	Ton		
Mtotal	94.79	Ton-m		
	E4 20	x10^3		
Ψ	54.20	rad/m		

Séptimo punto ($\epsilon_c=0.\,0174)$

Se propone $\varepsilon_c = 0.0174$

Asumiendo un valor de k = 0.43, se obtiene la profundidad del eje neutro kd = 27.89 cm

Defor uni	mación itaria	Área de (cr	el acero n2)	Esfu (kg/	erzo cm2)	Fuerz	a del acero (kg)	z (cm)	M (Ton-m)
εs1	0.0142	As1	14.73	fs1	4440	Cs1	65395	29.85	19.52
εs2	0.0018	As2	9.82	fs2	3592	Cs2	35261	9.95	3.51
es3	0.0106	As3	9.82	fs3	4221	Cs3	41440	9.95	4.12
εs4	0.0231	As4	14.73	fs4	4829	Ts4	71129	29.85	21.23

Area de (c	hormigón m2)	α	Fuerz hormig	Fuerzas del hormigón (kg)		δkd	z (cm)	M (Ton-m)
Ac1	1394.28	46.01	Cc1	64151	0.13	3.63	10.74	6.89
Ac2	1048.58	52.67	Cc2	55229	0.15	3.66	10.77	5.95
Ac3	1048.58	217.41	Cc3	227971	0.48	11.71	18.82	42.90

Ptotal	224.98	Ton	
Mtotal	92.23	Ton-m	
φ	62.40	x10^3 rad/m	

Diagrama de Fuerza-Desplazamiento.

Columna en voladizo:

l = 3.60 m = 141.73 plg.	Longitud de la columna
$d = 64.85 \ cm = 25.53 \ plg$	Peralte de la sección
$z = 3.60m = 141.73 \ plg.$	Distancia entre puntos de inflexión
$\varphi_y = 6.10 \ x \ 10^{-3} \ \frac{rad}{m}$	Curvatura de fluencia
$\varphi_u = 62.40 \ x \ 10^{-3} \ \frac{rad}{m}$	Curvatura última

Corley-Mattock:

$$l_p = 0.5(25.53) + 0.05(141.73) = 19.8515 \ plg = 50.42 \ cm$$

$$\Delta_{AB} = \left(\frac{6.10x10^{-3}(3.60)^2 * 2}{2 * 3}\right) + (62.40x10^{-3} - 6.10x10^{-3})(0.5042)\left(3.60 - \frac{0.5042}{2}\right)$$

$$\Delta_{AB} = 0.0264 + 0.0950 = 0.1214 \, m$$

$$F = \frac{92.48}{3.60} = 25.69 \,Ton$$

Fig. 53. Comparación de curva Fuerza-Desplazamiento

Columna doblemente empotrada:

l = 1.80 m = 70.87 plg. Longitud de la columna

Corley-Mattock:

$$l_p = 0.5(25.53) + 0.05(70.87) = 16.3085 \ plg = 41.42 \ cm$$

$$\Delta_{AB} = \left(\frac{6.10x10^{-3}(1.80)^2 * 2}{2 * 3}\right) + (62.40x10^{-3} - 6.10x10^{-3})(0.4142)\left(1.80 - \frac{0.4142}{2}\right)$$
$$\Delta_{AB} = 0.0066 + 0.0371 = 0.0437 m$$
$$\Delta_{AB} = 2(0.0066) + 2(0.0371) = 0.0874 m$$

Anexos 2

COLUMNA D4 (70X50)

Las propiedades de la sección, las propiedades del hormigón no confinado y las del acero de refuerzo son iguales a las propiedades de la columna B4 (70x50) que se encuentra en Anexos 1

La carga axial calculada mediante el modelo realizado en ETABS, se obtuvo:

$$P = 367.12 Ton$$

Acero de Refuerzo longitudinal

- **Fila 1:** $A_{S1} = 3 \phi 25 + 2\phi 22 = 22.33 \ cm^2$
- **Fila 2:** $A_{S2} = 2 \phi 25 = 9.82 cm^2$

Fila 3: $A_{S3} = 2 \phi 25 = 9.82 cm^2$

- **Fila 4:** $A_{S4} = 3 \phi 25 + 2\phi 22 = 22.33 \ cm^2$
- $A_{ST} = 64.29 \ cm^2$ Área de refuerzo longitudinal
- $\rho_{cc} = 2.37 \%$ Cuantía de refuerzo longitudinal confinada

Acero de Refuerzo Transversal

$\phi_{est} =$	8 mm	Diámetro del estribo
<i>s</i> =	150 mm	Espaciamiento longitudinal

<i>s</i> ′ =	142 <i>mm</i>	Espaciamiento libre longitudinal
$N_{RX} =$	4	Número de ramas en X.
$N_{Ry} =$	5	Número de ramas en Y
$ \rho_x = $	0.31 %	Cuantía de acero transversal confinado en X
$ \rho_y =$	0.27 %	Cuantía de acero transversal confinado en Y
$\rho_s =$	0.58 %	Cuantía de acero transversal confinado

Propiedades del Hormigón Confinado

$k_e =$	0.6836	Coeficiente de confinamiento efectivo
$f'_{lx} =$	$8.95 \frac{Kg}{cm^2}$	Presión de confinamiento efectivo en X
$f'_{ly} =$	7.64 $\frac{Kg}{cm^2}$	Presión de confinamiento efectivo en Y
$\frac{f'_{lx}}{f'_{co}} =$	0.04	Relación de confinamiento en X
$\frac{f'_{ly}}{f'_{co}} =$	0.03	Relación de confinamiento en Y
k =	1.15	Factor de esfuerzo confinado
$f'_{cc} =$	$276 \ \frac{Kg}{cm^2}$	Resistencia a la compresión confinada
$\varepsilon_{cc} =$	0.00328	Deformación unitaria en f'_{cc}
$\varepsilon_{cu} =$	0.01754	Deformación unitaria del hormigón confinado (Pristley)
$E_{\rm sec} =$	84221 $\frac{Kg}{cm^2}$	Módulo secante del hormigón confinado
r =	1.56	

Cálculo del Diagrama Momento-Curvatura.

Primer punto ($\varepsilon_c = 0.001$)

Se propone $\varepsilon_c = 0.001$

Asumiendo un valor de k = 0.97, se obtiene la profundidad del eje neutro kd = 43.30 c

Defor uni	mación taria	Área de (cm	l acero 12)	Esfuerzo (kg/cm2)		rzo Fuerza de n2) acero (kg		z (cm)	M (Ton-m)
εs1	0.0009	As1	22.33	fs1	1788.6	Cs1	39937	19.85	7.93
εs2	0.0006	As2	9.82	fs2	1168	Cs2	11469	6.62	0.76
εs3	0.0003	As3	9.82	fs3	548	Cs3	5379	6.62	0.36
εs4	0.00004	As4	22.33	fs4	72.427	Ts4	1617	19.85	0.32

Are hormig	ea de ón (cm2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	3031.35	106.84	Cc1	323869	0.65	28.15	9.84	31.88
Ac2	2507.71	97.87	Cc2	245429.7	0.66	26.27	7.97	19.55
Ac3	2507.71	93.24	Cc3	233819	0.65	25.87	7.57	17.70

Ptotal	367.43	Ton
Mtotal	39.39	Ton-m
φ	2.31	x10^3 rad/m

Segundo punto ($\varepsilon_c = 0.003$)

Se propone $\varepsilon_c = 0.003$

Asumiendo un valor de k = 0.60, se obtiene la profundidad del eje neutro $kd = 26.79 \ cm$

Defor uni	mación Itaria	Área do (cr	el acero m2)	Esfue (kg/ci	Esfuerzo Fu (kg/cm2) ac		rza del ro (kg)	z (cm)	M (Ton-m)
εs1	0.0024	As1	22.33	fs1	4200	Cs1	93781	19.85	18.62
εs2	0.0009	As2	9.82	fs2	1910	Cs2	18756	6.62	1.24

εs3	0.0005	As3	9.82	fs3	1098	Ts3	10781	6.62	0.71
εs4	0.0020	As4	22.33	fs4	4106.8	Ts4	91701	19.85	18.20
Are horr cı	ea de nigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)	
Ac1	1875.05	185.47	Cc1	347765.4	0.58	15.54	13.75	47.82	
Ac2	1467.04	181.65	Cc2	266488.6	0.6	13.97	12.19	32.47	
Ac3	1467.04	187.55	Cc3	275144.2	0.61	14.2	12.42	34.17	

Ptotal	366.48	Ton
Mtotal	88.29	Ton-m
φ	11.20	x10^3 rad/m

Punto de fluncia ($\epsilon_c = 0.0031$)

Se propone $\varepsilon_c = 0.0031$

Asumiendo un valor de k = 0.59, se obtiene la profundidad del eje

neutro kd = 26.63 cm

Defor uni	mación taria	Área do (cr	el acero n2)	Esfuerzo (kg/cm2)		fuerzo Fuerz g/cm2) acerc		z (cm)	M (Ton-m)
εs1	0.0025	As1	22.33	fs1	4200	Cs1	93781	19.85	18.62
εs2	0.0010	As2	9.82	fs2	1948	Cs2	19128	6.62	1.27
εs3	0.0006	As3	9.82	fs3	1179	Ts3	11576	6.62	0.77
εs4	0.0021	As4	22.33	fs4	4200	Ts4	93781	19.85	18.62

Area de hormigón (cm2)		α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1863.92	185.91	Cc1	Cc1 346521.6		15.44	13.82	47.88
Ac2	1457.03	182.95	Cc2	266563.5	0.59	13.65	12.02	32.03
Ac3	1457.03	190.7	Cc3 277855.4		0.61	14.11	12.48	34.68

Ptotal	365.37	Ton		
Mtotal	89.78	Ton-m		
φ	11.64	x10^3 rad/m		

Cuarto punto ($\varepsilon_c = 0.0050$)

Se propone $\varepsilon_c = 0.0050$

Asumiendo un valor de k = 0.59, se obtiene la profundidad del eje

neutro kd = 26.24 cm

Defor uni	mación taria	Área do (cr	el acero n2)	Esfue (kg/cr	rzo n2)	Fue ace	rza del ro (kg)	z (cm)	M (Ton-m)
εs1	0.0040	As1	22.33	fs1	4200	Cs1	93781	19.85	18.62
εs2	0.0015	As2	9.82	fs2	3039	Cs2	29837	6.62	1.98
εs3	0.0010	As3	9.82	fs3	2080	Ts3	20416	6.62	1.35
εs4	0.0035	As4	22.33	fs4	4200	Ts4	93781	19.85	18.62

Are hori (c	ea de migón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1836.83	160.12	Cc1	294116.5	0.47	12.33	11.09	32.63
Ac2	1432.65	178.5	Cc2	255727.3	0.52	11.83	10.58	27.07
Ac3	1432.65	221.84	Cc3	317818.2	0.58	13.19	11.95	37.98

Ptotal	365.63	Ton	
Mtotal	84.09	Ton-m	
	10.0E	x10^3	
Ψ	19.05	rad/m	

Quinto punto ($\varepsilon_c = 0.010$)

Se propone $\varepsilon_c = 0.0100$

Asumiendo un valor de k = 0.60, se obtiene la profundidad del eje

neutro kd = 26.93 cm

Defor uni	mación Itaria	Área do (cr	el acero n2)	Esfue (kg/cr	rzo n2)	Fue ace	rza del ro (kg)	z (cm)	M (Ton-m)
εs1	0.0081	As1	22.33	fs1	4200	Cs1	93781	19.85	18.62
εs2	0.0032	As2	9.82	fs2	4200	Cs2	41233	6.62	2.73
εs3	0.0017	As3	9.82	fs3	3537	Ts3	34725	6.62	2.30
εs4	0.0067	As4	22.33	fs4	4200	Ts4	93781	19.85	18.62

Are hori (c	ea de migón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1884.76	80.06	Cc1	150895.9	0.23	6.193	4.27	6.44
Ac2	1475.79	92.02	Cc2	135801.9	0.27	6.325	4.40	5.97
Ac3	1475.79	234.13	Cc3	345526	0.53	12.42	10.49	36.25

Ptotal	367.13	Ton
Mtotal	78.97	Ton-m
φ	37.14	x10^3 rad/m

Sexto punto ($\varepsilon_c = 0.0150$)

Se propone $\varepsilon_c = 0.0150$

Asumiendo un valor de k = 0.63, se obtiene la profundidad del eje neutro $kd = 28.24 \ cm$

Deformación unitaria		Área do (cr	Área del acero (cm2)		Esfuerzo Fuerza del (kg/cm2) acero (kg)		rza del ro (kg)	z (cm)	M (Ton-m)
εs1	0.0123	As1	22.33	fs1	4326.8	Cs1	96612	19.85	19.18
εs2	0.0052	As2	9.82	fs2	4200	Cs2	41233	6.62	2.73
εs3	0.0018	As3	9.82	fs3	3639	Ts3	35730	6.62	2.37
εs4	0.0088	As4	22.33	fs4	4200	Ts4	93781	19.85	18.62

Are hori (c	ea de nigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1976.89	53.37	Cc1	105514.2	0.16	4.519	1.28	1.35
Ac2	1558.70	61.59	Cc2	96000.14	0.18	4.453	1.21	1.16
Ac3	1558.70	223.82	Cc3	348867.5	0.5	12.37	9.13	31.85

Ptotal	366.72	Ton
Mtotal	74.92	Ton-m
φ	53.11	x10^3 rad/m
Séptimo punto ($\varepsilon_c = 0.0198$)

Se propone $\varepsilon_c = 0.0198$

Asumiendo un valor de k = 0.65, se obtiene la profundidad del eje

neutro kd = 29.24 cm

Defor uni	mación Itaria	Área do (cr	el acero n2)	Esfue (kg/cr	rzo n2)	Fue ace	rza del ro (kg)	z (cm)	M (Ton-m)
εs1	0.0163	As1	22.33	fs1	4551	Cs1	101609	19.85	20.17
εs2	0.0074	As2	9.82	fs2	4200	Cs2	41233	6.62	2.73
εs3	0.0016	As3	9.82	fs3	3264	Ts3	32047	6.62	2.12
εs4	0.0106	As4	22.33	fs4	4216	Ts4	94129	19.85	18.68

Are hori (c	Area de hormigón (cm2)		Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	2046.93	40.43	Cc1	82757.26	0.12	3.51	0.73	0.61
Ac2	1621.73	46.01	Cc2	74615.99	0.13	3.35	0.90	0.67
Ac3	1621.73	211.08	Cc3	342315.7	0.47	12.10	7.86	26.90

Ptotal	367.12	Ton
Mtotal	70.54	Ton-m
φ	67.71	x10^3 rad/m

Diagrama de Fuerza-Desplazamiento

Columna en voladizo:

l = 3.60 m = 141.73 plg.	Longitud de la columna
$d = 44.85 \ cm = 17.68 \ plg$	Peralte de la sección
$z = 3.60m = 141.73 \ plg.$	Distancia entre puntos de inflexión
$\varphi_y = 11.64x \ 10^{-3} \ \frac{rad}{m}$	Curvatura de fluencia
$\varphi_u = 67.71 \ x \ 10^{-3} \ \frac{rad}{m}$	Curvatura última

$l_p = 0.4045 \ m$	Longitud plástica (Corley-Mattock)
$\Delta_{u=} 0.1273 m$	Desplazamiento último
$\Delta_{y=} 0.05 m$	Desplazamiento de fluencia
F = 24.94 Ton	Fuerza lateral
$\mu = 2.53$	Ductilidad de desplazamiento

Fig. 54.Comparación de Diagrama Fuerza-Desplazamiento, columna D4 (70X50) Columna doblemente empotrada:

 $l_p = 0.3145 m$ $\Delta_{u=} 0.0832 m$ $\Delta_{y=} 0.0251 m$ $\mu = 3.31$

COLUMNA D4 (50X70)

Las propiedades de la sección, las propiedades del hormigón no confinado y las del acero de refuerzo son iguales a las propiedades de la columna B4 (50x70) que se encuentra en Anexos 1

Acero de Refuerzo longitudinal

- **Fila 1:** $A_{S1} = 4 \phi 25 = 19.63 cm^2$
- **Fila 2:** $A_{S2} = 2 \phi 22 = 7.60 cm^2$
- **Fila 3:** $A_{S3} = 2 \phi 25 = 9.82 cm^2$
- **Fila 4:** $A_{S4} = 2\phi \ 22 = 7.60 \ cm^2$
- **Fila 5:** $A_{S5} = 4 \phi 25 = 19.63 cm^2$
- $A_{ST} = 64.29 \ cm^2$ Área de refuerzo longitudinal
- $\rho_{cc} = 2.37 \%$ Cuantía de refuerzo longitudinal confinada

Acero de Refuerzo Transversal

$\phi_{est} =$	8 <i>mm</i>	Diámetro del estribo
<i>s</i> =	150 <i>mm</i>	Espaciamiento longitudinal

<i>s</i> ′ =	142 mm	Espaciamiento libre longitudinal
$N_{RX} =$	5	Número de ramas en X.
$N_{Ry} =$	4	Número de ramas en Y
$ \rho_x = $	0.27 %	Cuantía de acero transversal confinado en X
$ ho_{\mathcal{Y}} =$	0.31 %	Cuantía de acero transversal confinado en Y
$\rho_s =$	0.58 %	Cuantía de acero transversal confinado

Propiedades del Hormigón Confinado

Х
Υ
da
onfinado
ado

Cálculo de Diagrama Momento-Curvatura.

Primer punto ($\varepsilon_c = 0.0010$)

Se propone $\varepsilon_c = 0.0010$

Asumiendo un valor de k = 0.94, se obtiene la profundidad del eje neutro $kd = 60.96 \ cm$

Defor uni	mación taria	Área de (cn	el acero n2)	Esfu (kg/o	erzo cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0009	As1	19.63	fs1	1858	Cs1	36482	29.85	10.89
εs2	0.0007	As2	7.60	fs2	1361	Cs2	10347	14.93	1.54
εs3	0.0004	As3	9.82	fs3	864	Cs3	8489	0	0.00
εs4	0.0002	As4	7.60	fs4	367	Ts4	2793	14.93	0.42
εs5	0.0001	As5	19.63	fs5	130	Ts5	2544	29.85	0.76

Area de (c	hormigón m2)	α	Fuerz hormig	as del ón (kg)	δ	δkd	z (cm)	M (Ton-m)
Ac1	3047.95	106.84	Cc1	325643	0.65	39.62	13.66	44.50
Ac2	2470.74	97.87	Cc2	241811	0.66	37.92	11.96	28.93
Ac3	2470.74	93.24	Cc3	230372	0.65	37.35	11.39	26.24

Ptotal	364.19	Ton		
Mtotal	55.42	Ton-m		
	1 6 4	x10^3		
Ψ	1.04	rad/m		

Punto de fluencia ($\epsilon_c = 0.0028$)

Se propone $\varepsilon_c = 0.0028$

Asumiendo un valor de k = 0.58, se obtiene la profundidad del eje

neutro kd = 37.61 cm

Deformación unitaria		Área de (cn	Área del acero (cm2)		(kg/cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0025	As1	19.63	fs1	4200	Cs1	82446	29.85	24.61
εs2	0.0013	As2	7.60	fs2	2689	Cs2	20437	14.93	3.05
es3	0.0002	As3	9.82	fs3	401	Cs3	3934	0	0.00

εs4	0.0009	As4	7.60	fs4	1888	Ts4	14347	14.93	2.14
εs5	0.0021	As5	19.63	fs5	4176	Ts5	81980	29.85	24.47

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1880.65	184.01	Cc1	346058	0.59	22.19	19.58	67.75
Ac2	1466.86	181.65	Cc2	266455	0.60	20.47	17.85	47.57
Ac3	1466.86	187.55	Cc3	275109	0.61	20.81	18.20	50.06

Ptotal	365.20	Ton		
Mtotal	124.51	Ton-m		
	7 6 6	x10^3		
φ	7.55	rad/m		

Tercer punto ($\varepsilon_c = 0.0030$)

Se propone $\varepsilon_c = 0.0030$

Asumiendo un valor de k = 0.57, se obtiene la profundidad del eje neutro $kd = 37.20 \ cm$

Defor uni	mación taria	Área de (cn	el acero n2)	Esfu (kg/	erzo cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0026	As1	19.63	fs1	4200	Cs1	82446	29.85	24.61
εs2	0.0014	As2	7.60	fs2	2803	Cs2	21304	14.93	3.18
es3	0.0002	As3	9.82	fs3	360	Cs3	3531	0	0.00
εs4	0.0010	As4	7.60	fs4	2084	Ts4	15839	14.93	2.36
εs5	0.0022	As5	19.63	fs5	4200	Ts5	82446	29.85	24.61

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1859.80	185.47	Cc1	344937	0.58	21.57	19.38	66.84
Ac2	1448.93	182.95	Cc2	265082	0.59	19.88	17.68	46.88
Ac3	1448.93	187.55	Cc3	271747	0.61	20.55	18.36	49.89

Ptotal	360.60	Ton	
Mtotal	124.61	Ton-m	
φ	8.07	x10^3 rad/m	

Cuarto punto ($\varepsilon_c = 0.0050$)

Se propone $\varepsilon_c = 0.0050$

Asumiendo un valor de k = 0.56, se obtiene la profundidad del eje

neutro kd = 36.27 cm

Defor uni	mación taria	Área de (cn	el acero n2)	Esfu (kg/o	erzo cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)
εs1	0.0043	As1	19.63	fs1	4200	Cs1	82446	29.85	24.61
εs2	0.0022	As2	7.60	fs2	4200	Cs2	31920	14.93	4.76
εs3	0.0002	As3	9.82	fs3	345	Cs3	3390	0	0.00
εs4	0.0019	As4	7.60	fs4	3823	Ts3	29056	14.93	4.34
εs5	0.0039	As5	19.63	fs5	4200	Ts4	82446	29.85	24.61

Area de (c	hormigón m2)	α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1813.26	160.12	Cc1	290339	0.47	17.04	15.78	45.81
Ac2	1408.90	174.16	Cc2	245375	0.51	16.71	15.45	37.90
Ac3	1408.90	223.97	Cc3	315552	0.58	19.00	18.31	57.78

Ptotal	363.38	Ton		
Mtotal	124.01	Ton-m		
φ	13.79	x10^3 rad/m		

Quinto punto ($\varepsilon_c = 0.010$)

Se propone $\varepsilon_c = 0.0100$

Asumiendo un valor de k = 0.57, se obtiene la profundidad del eje

neutro kd = 36.95 cm

Defor uni	mación itaria	Área de (cr	el acero n2)	Esfu (kg/	erzo cm2)	Fuerza del acero (kg)		z (cm)	M (Ton-m)	
εs1	0.0086	As1	19.63	fs1	4200	Cs1		82446	29.85	24.61
εs2	0.0046	As2	7.60	fs2	4200	Cs2		31920	14.93	4.76
εs3	0.0005	As3	9.82	fs3	1062	Cs3		10424	0	0.00
εs4	0.0035	As4	7.60	fs4	4200	Ts3		31920	14.93	4.76
εs5	0.0076	As5	19.63	fs5	4200	Ts4		82446	29.85	24.61
Area de (c	hormigón m2)	α	Fuerz hormig	as del ón (kg)	δ	δkd	z	(cm)	M (Ton-m)	

Ac1	1847.25	80.06	Cc1	147891	0.23	8.50	6.55	9.69
Ac2	1438.14	87.98	Cc2	126527	0.26	8.70	6.75	8.54
Ac3	1438.14	233.5	Cc3	335805	0.52	17.39	15.45	51.87

Ptotal	367.59	Ton	
Mtotal	111.77	Ton-m	
	27.07	x10^3	
Ψ	27.07	rad/m	

Sexto punto ($\epsilon_c = 0.015$)

Se propone $\varepsilon_c = 0.0150$

Asumiendo un valor de k = 0.58, se obtiene la profundidad del eje

neutro $kd = 37.83 \ cm$

Deformación unitaria		Área de (cn	el acero n2)	Esfu (kg/	erzo cm2)	Fuerz	a del acero (kg)	z (cm)	M (Ton-m)
εs1	0.0130	As1	19.63	fs1	4369	Cs1	85763	29.85	25.60
εs2	0.0070	As2	7.60	fs2	4200	Cs2	31920	14.925	4.76
εs3	0.0011	As3	9.82	fs3	2279	Cs3	22375	0	0.00
εs4	0.0051	As4	7.60	fs4	4200	Ts3 31920		14.93	4.76
εs5	0.0107	As5	19.63	fs5	4226	Ts4	Ts4 82947		24.76

Area de (c	hormigón m2)	α	Fuerz hormig	as del ón (kg)	δ	δkd	z (cm)	M (Ton-m)
Ac1	1891.54	53.37	Cc1	100952	0.16	6.05	3.22	3.25
Ac2	1476.23	58.87	Cc2	86905	0.17	5.84	3.01	2.61
Ac3	1476.23	222.09	Cc3	327855	0.49	16.82	13.99	45.87

Ptotal	367.09	Ton
Mtotal	106.40	Ton-m
φ	39.65	x10^3 rad/m

Séptimo punto ($\epsilon_c = 0.0192$)

Se propone $\varepsilon_c = 0.0192$

Asumiendo un valor de k = 0.59, se obtiene la profundidad del eje neutro $kd = 38.50 \ cm$

Deformación unitaria		Área del acero (cm2)		Esfu (kg/	erzo cm2)	Fuerz	a del acero (kg)	z (cm)	M (Ton-m)
εs1	0.0166	As1	19.63	fs1	4566	Cs1	89632	29.85	26.76
εs2	0.0092	As2	7.60	fs2	4200	Cs2	31920	14.925	4.76
εs3	0.0017	As3	9.82	fs3	3543	Cs3	34792	0	0.00
εs4	0.0057	As4	7.60	fs4	4200	Ts3 3192		14.93	4.76
es5	0.0131	As5	19.63	fs5	fs5 4380		85976	29.85	25.66

Area de hormigón (cm2)		α	Fuerzas del hormigón (kg)		δ	δkd	z (cm)	M (Ton-m)
Ac1	1924.99	41.70	Cc1	80272	0.12	4.62	1.12	0.90
Ac2	1504.99	50.67	Cc2	76258	0.15	5.25	1.75	1.33
Ac3	1504.99	215.67	Cc3	324581	0.48	16.80	13.30	43.17

Ptotal	367.04	Ton
Mtotal	104.68	Ton-m
φ	49.87	x10^3 rad/m

Diagrama de Fuerza-Desplazamiento

Columna en voladizo:

l = 3.60 m = 141.73 plg.	Longitud de la columna
$d = 64.85 \ cm = 25.53 \ plg$	Peralte de la sección
$z = 3.60m = 141.73 \ plg.$	Distancia entre puntos de inflexión
$\varphi_y = 7.55x \ 10^{-3} \ \frac{rad}{m}$	Curvatura de fluencia
$\varphi_u = 49.87 \ x \ 10^{-3} \ \frac{rad}{m}$	Curvatura última
$l_p = 0.5042 \ m$	Longitud plástica (Corley-Mattock)
$\Delta_{u=} 0.0961 m$	Desplazamiento último
$\Delta_{y=} 0.0326 m$	Desplazamiento de fluencia
F = 34.59 Ton	Fuerza lateral
$\mu = 2.95$	Ductilidad de desplazamiento

Fig. 55.Comparación Fuerza-Desplazamiento, columna D4 (50x70)

Columna doblemente empotrada:

$l_p = 0.4142m$	Longitud plástica (Corley-Mattock)
$\Delta_{u=} 0.0722 m$	Desplazamiento último
$\Delta_{y=} 0.0164 m$	Desplazamiento de fluencia
$\mu = 4.40$	Ductilidad de desplazamiento

<u>Hormige</u> <u>Confir</u>	<u>ón No-</u> nado	<u>Horm</u> Confir	igón nado			<u>Hormig</u>	ón No-0	<u>Confinado</u>				<u>Hormi</u>	gón Con	finado	
٤,	fc	ες	fc	Ai	Zi	A _{cum}	Z _{cum}	α A _{cum} /ε	δ Ζ _{cum} /ε	A _i	Zi	A _{cum}	Z _{cum}	A _{cum} /ε	Z _{cum} /ε
-0.0001	0.00	-0.0001	0.00												
-0.0001	-30.98	-0.0001	-30.98												
0.00000	0.00	0.00000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00005	11.69	0.00005	11.67	0.00	0.00	0.00	0.00	5.85	0.67	0.00	0.00	0.00	0.00	5.83	0.67
0.00100	193.96	0.00100	183.02	0.01	0.00	0.11	0.00	106.84	0.65	0.01	0.00	0.10	0.00	101.59	0.65
0.00150	233.12	0.00150	230.22	0.01	0.00	0.22	0.00	143.52	0.64	0.01	0.00	0.21	0.00	137.28	0.64
0.00200	238.40	0.00200	256.82	0.01	0.00	0.33	0.00	167.18	0.62	0.01	0.00	0.33	0.00	164.18	0.63
0.00250	223.06	0.00250	270.19	0.01	0.00	0.45	0.00	180.07	0.60	0.01	0.00	0.46	0.00	184.22	0.62
0.00255	221.05	0.00255	271.01	0.01	0.00	0.46	0.00	180.90	0.60	0.01	0.00	0.47	0.00	185.91	0.62
0.00260	218.98	0.00260	271.75	0.01	0.00	0.47	0.00	181.65	0.60	0.01	0.00	0.49	0.00	187.55	0.61
0.00265	216.87	0.00265	272.43	0.01	0.00	0.48	0.00	182.33	0.59	0.01	0.00	0.50	0.00	189.15	0.61
0.00270	214.72	0.00270	273.03	0.01	0.00	0.49	0.00	182.95	0.59	0.01	0.00	0.51	0.00	190.70	0.61
0.00275	212.55	0.00275	273.57	0.01	0.00	0.50	0.00	183.51	0.59	0.01	0.00	0.53	0.00	192.20	0.61
0.00280	210.36	0.00280	274.05	0.01	0.00	0.52	0.00	184.01	0.59	0.01	0.00	0.54	0.00	193.66	0.61
0.00285	208.14	0.00285	274.46	0.01	0.00	0.53	0.00	184.45	0.59	0.01	0.00	0.56	0.00	195.07	0.61
0.00290	205.92	0.00290	274.82	0.01	0.00	0.54	0.00	184.84	0.58	0.01	0.00	0.57	0.00	196.44	0.61
0.00295	203.68	0.00295	275.13	0.01	0.00	0.55	0.00	185.18	0.58	0.01	0.00	0.58	0.00	197.77	0.61
0.00300	201.44	0.00300	275.39	0.01	0.00	0.56	0.00	185.47	0.58	0.01	0.00	0.60	0.00	199.07	0.61
0.00350	179.49	0.00350	275.67	0.01	0.00	0.65	0.00	186.17	0.56	0.01	0.00	0.74	0.00	210.03	0.60
0.00400	134.99	0.00400	273.03	0.01	0.00	0.73	0.00	183.28	0.54	0.01	0.00	0.87	0.00	218.09	0.59
0.00450	67.49	0.00450	268.70	0.00	0.00	0.78	0.00	174.16	0.51	0.01	0.00	1.01	0.00	223.97	0.58

0.00500	0.00	0.00500	263.45	0.00	0.00	0.80	0.00	160.12	0.47	0.01	0.00	1.14	0.00	228.19	0.57
0.00550	0.00	0.00550	257.73	0.00	0.00	0.80	0.00	145.57	0.43	0.01	0.01	1.27	0.00	231.13	0.56
0.00600	0.00	0.00600	251.83	0.00	0.00	0.80	0.00	133.43	0.39	0.01	0.01	1.40	0.00	233.10	0.56
0.00650	0.00	0.00650	245.93	0.00	0.00	0.80	0.00	123.17	0.36	0.01	0.01	1.52	0.00	234.32	0.55
0.00700	0.00	0.00700	240.13	0.00	0.00	0.80	0.00	114.37	0.33	0.01	0.01	1.64	0.00	234.94	0.54
0.00750	0.00	0.00750	234.50	0.00	0.00	0.80	0.00	106.75	0.31	0.01	0.01	1.76	0.00	235.10	0.54
0.00800	0.00	0.00800	229.08	0.00	0.00	0.80	0.00	100.08	0.29	0.01	0.01	1.88	0.00	234.89	0.53
0.00850	0.00	0.00850	223.88	0.00	0.00	0.80	0.00	94.19	0.28	0.01	0.01	1.99	0.00	234.39	0.53
0.00900	0.00	0.00900	218.90	0.00	0.00	0.80	0.00	88.96	0.26	0.01	0.01	2.10	0.00	233.67	0.52
0.00950	0.00	0.00950	214.14	0.00	0.00	0.80	0.00	84.27	0.25	0.01	0.01	2.21	0.00	232.77	0.52
0.01000	0.00	0.01000	209.61	0.00	0.00	0.80	0.00	80.06	0.23	0.01	0.01	2.32	0.01	231.72	0.52
0.01500	0.00	0.01500	174.18	0.00	0.00	0.80	0.00	53.37	0.16	0.01	0.01	3.27	0.01	218.00	0.49
0.02000	0.00	0.02000	0.00	0.00	0.00	0.80	0.00	40.03	0.12	0.00	0.00	3.33	0.01	40.03	0.12
0.02500	0.00	0.02500	0.00	0.00	0.00	0.80	0.00	32.02	0.09	0.00	0.00	3.33	0.01	32.02	0.09
0.03000	0.00	0.03000	0.00	0.00	0.00	0.80	0.00	26.69	0.08	0.00	0.00	3.33	0.01	26.69	0.08

Anexos 3

Puntos obtenidos de la curva Esfuerzo – Deformación de Mander (1988)

Anexos 4 Tabla para rótulas plásticas de vigas de hormigón armado (FEMA 356-0)

Table 6-7	Mod Rein	eling Param forced Con	eters and crete Bear	Numerica ns	al Acceptanc	e Criteria	for Nonli	inear Pro	cedures-	-
			Mod	eling Para	meters ⁸		Acce	ptance Cri	teria ³	
						I	Plastic Ro	tation Ang	le, radians	5
							Perf	ormance l	.evel	
					Residual			Compon	ent Type	
			Plastic Angle,	Rotation radians	Strength Ratio		Prin	nary	Seco	ndary
Condition	15		а	b	с	10	LS	СР	LS	СР
i. Beams	controlled I	by flexure ¹								
<u>ρ – ρ΄</u> P _{bai}	Trans. Reinf. ²	$\frac{V}{b_w d_v f_c}$								
≤0.0	С	≤3	0.025	0.05	0.2	0.010	0.02	0.025	0.02	0.05
≤0.0	С	≥6	0.02	0.04	0.2	0.005	0.01	0.02	0.02	0.04
≥0.5	С	≤3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03
≥0.5	С	≥6	0.015	0.02	0.2	0.005	0.005	0.015	0.015	0.02
≤0.0	NC	≤3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03
≤0.0	NC	≥6	0.01	0.015	0.2	0.0015	0.005	0.01	0.01	0.015
≥0.5	NC	≤3	0.01	0.015	0.2	0.005	0.01	0.01	0.01	0.015
≥0.5	NC	≥6	0.005	0.01	0.2	0.0015	0.005	0.005	0.005	0.01
ii. Beams	controlled	by shear ¹								
Stirrup sp	acing ≤ d/2		0.0030	0.02	0.2	0.0015	0.0020	0.0030	0.01	0.02
Stirrup sp	acing > d/2		0.0030	0.01	0.2	0.0015	0.0020	0.0030	0.005	0.01
iii. Beams	s controlled	l by inadequa	te developi	ment or sp	licing along th	ne span ¹				
Stirrup sp	acing ≤ d/2		0.0030	0.02	0.0	0.0015	0.0020	0.0030	0.01	0.02
Stirrup sp	acing > d/2		0.0030	0.01	0.0	0.0015	0.0020	0.0030	0.005	0.01
iv. Beams	controlled	by inadequa	te embedm	ent into be	am-column jo	int ¹				
			0.015	0.03	0.2	0.01	0.01	0.015	0.02	0.03
1. When n	tore than one o	f the conditions i.	ii, iii, and iv o	cours for a giv	ren component, us	e the minimu	n appropriate	numerical va	due from the	table.

 "C" and "NC" are abbreviations for conforming and nonconforming transverse reinforcement. A component is conforming if, within the flexural plastic hinge region, hoops are spaced at ≤ d/3, and if, for components of moderate and high ductility demand, the strength provided by the hoops (V) is at least three-fourths of the design shear. Otherwise, the component is considered nonconforming.

3. Linear interpolation between values listed in the table shall be permitted.

Tabla para rótulas plásticas de columnas de hormigón armado (FEMA 356-0)

Table 6-8	Mod Rein	eling Param forced Con	eters and crete Colu	Numerica mns	al Acceptanc	e Criteria	for Nonli	inear Pro	cedures-	-			
			Mod	deling Para	meters ⁴		Acce	ptance Cri	iteria ⁴				
							Plastic Ro	tation Ang	jle, radian	5			
							Performance Level						
					Residual			Compon	ent Type				
			Plastic Rotation Angle, radians		Strength Ratio		Prin	nary	Seco	ndary			
Condition	15		а	b	c	ю	LS	СР	LS	СР			
i. Column	s controlle	d by flexure ¹											
Р	Trans.	V											
$\overline{A_g f_c}$	Reinf.*	$b_w d_v f_c^r$											
≤ 0.1	С	≤ 3	0.02	0.03	0.2	0.005	0.015	0.02	0.02	0.03			
≤ 0.1	С	≥ 6	0.016	0.024	0.2	0.005	0.012	0.016	0.016	0.024			
≥ 0.4	С	≤ 3	0.015	0.025	0.2	0.003	0.012	0.015	0.018	0.025			
≥ 0.4	С	≥6	0.012	0.02	0.2	0.003	0.01	0.012	0.013	0.02			
≤ 0.1	NC	≤ 3	0.006	0.015	0.2	0.005	0.005	0.006	0.01	0.015			
≤ 0.1	NC	≥ 6	0.005	0.012	0.2	0.005	0.004	0.005	0.008	0.012			
≥0.4	NC	≤ 3	0.003	0.01	0.2	0.002	0.002	0.003	0.006	0.01			
≥0.4	NC	≥6	0.002	0.008	0.2	0.002	0.002	0.002	0.005	0.008			
ii. Colum	ns controlle	ed by shear ^{1,3}	3										
All cases	5		-	-	-	-	-	-	.0030	.0040			
iii. Colum	ns controll	ed by inadeq	uate develo	opment or s	splicing along	the clear	height ^{1,3}						
Hoop spa	cing ≤ d/2		0.01	0.02	0.4	0.005	0.005	0.01	0.01	0.02			
Hoop spa	cing > d/2		0.0	0.01	0.2	0.0	0.0	0.0	0.005	0.01			
iv. Colum	ns with axi	al loads exce	eding 0.70	0,1,3									
Conforming hoops over the entire 0.015 0.025 0.02 0.0 0.005 0.01 0.01 0.02									0.02				
All other o	ases		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
1. When n	nore than one o	f the conditions i,	ii, iii, and iv o	occurs for a giv	en component, us	e the minimu	m appropriate	numerical vi	due from the	table.			
 "C" and hinge re three-fo 	2. "C" and "NC" are abbreviations for conforming and nonconforming transverse reinforcement. A component is conforming if, within the flexural plastic hinge region, hoops are spaced at ≤ d/3, and if, for components of moderate and high ductility demand, the strength provided by the hoops (V _x) is at least three-fourths of the design shear. Otherwise, the component is considered nonconforming.												
3. To qual	ify, columns m	ust have transvers	e reinforceme	at consisting o	of hoops. Otherwis	e, actions sha	ll be treated a	s force-contro	olled				

4. Linear interpolation between values listed in the table shall be permitted.

5. For columns controlled by shear, see Section 6.5.2.4.2 for acceptance criteria.

Anexos 5

Espectro Elástico según el NEC-11

Т	Sa	Sd
0	0.59	0.0000
0.1	0.897	0.0002
0.2	1.062	0.0011
0.3	1.062	0.0024
0.4	1.062	0.0043
0.5	1.062	0.0067
0.6	1.062	0.0097
0.7	1.062	0.0132
0.8	1.062	0.0172
0.85	1.062	0.0194
0.00	0 9969	0.0104
0.3	0.3303	0.0203
1 1	0.0972	0.0227
1.1	0.0130	0.0250
1.2	0.7477	0.0273
1.3	0.6901	0.0295
1.4	0.6408	0.0318
1.5	0.5981	0.0341
1.6	0.5607	0.0364
1.7	0.5278	0.0386
1.8	0.4984	0.0409
1.9	0.4722	0.0432
2	0.4486	0.0455
2.1	0.4272	0.0477
2.2	0.4078	0.0500
2.3	0.3901	0.0523
2.4	0.3738	0.0545
2.5	0.3589	0.0568
2.6	0.3451	0.0591
2.7	0.3323	0.0614
2.8	0.3204	0.0636
2.9	0.3094	0.0659
3	0.2991	0.0682
3.1	0.2894	0.0705
3.2	0.2804	0.0727
3.3	0.2719	0.0750
3.4	0 2639	0.0773
3.5	0 2563	0 0795
3.6	0.2000	0.0818
37	0.2102	0 0841
3.8	0.2420	0.0864
3.0	0.2001	0.0004
3.9	0.2300	0.0000
4	0.2240	0.0309
4.1	0.2100	0.0952
4.2	0.2130	0.0304
4.3	0.2000	0.0977
4.4	0.2039	0.1000
4.5	0.1994	0.1023
4.6	0.1950	0.1045
4.7	0.1909	0.1068
4.8	0.1869	0.1091
4.9	0.1831	0.1114
5	0.1794	0.1136

Anexos 6

Gráficas obtenidas para cada pórtico mediante el Método Espectro Capacidad

PRIMER CASO: No confinado adecuadamente

Fig. 56. Pórtico Eje 1 ("Nonconforming transverse reinforcement")

Fig. 57. Pórtico Eje 2 ("Nonconforming transverse reinforcement")

Fig. 58. Pórtico Eje 4 ("Nonconforming transverse reinforcement")

Fig. 59. Pórtico Eje 5 ("Nonconforming transverse reinforcement")

Fig. 60. Pórtico Eje A ("Nonconforming transverse reinforcement")

Fig. 61. Pórtico Eje B ("Nonconforming transverse reinforcement")

Fig. 62. Pórtico Eje C ("Nonconforming transverse reinforcement")

Fig. 63. Pórtico Eje D ("Nonconforming transverse reinforcement")

SEGUNDO CASO: Confinada adecuadamente

Fig. 64. Pórtico Eje 1 ("Conforming transverse reinforcement")

Fig. 65. Pórtico Eje 2 ("Conforming transverse reinforcement")

Fig. 66. Pórtico Eje 4 ("Conforming transverse reinforcement")

Fig. 67. Pórtico Eje 5 ("Conforming transverse reinforcement")

Fig. 68. Pórtico Eje A ("Conforming transverse reinforcement")

Fig. 69. Pórtico Eje B ("Conforming transverse reinforcement")

Fig. 70. Pórtico Eje C ("Conforming transverse reinforcement")

Fig. 71. Pórtico Eje D ("Conforming transverse reinforcement")

BIBLIOGRAFÍA

Aguiar, R. (2007). Factor de reducción de las fuerzas sísmicas en edificios de hormigón armado sin muros de corte.(Primera Edición) Ecuador: Centro de Investigaciones Científicas, Escuela Politécnica del Ejército.
Recuperado a partir de http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/133/1 32

Aguiar, R. (2008). Análisis Sísmico de Edificios. (Primera Edición). Ecuador: Centro de Investigaciones Científicas, Escuela Politécnica del Ejército. Recuperado a partir de: http://es.scribd.com/doc/150778289/ANALISIS-SISMICO-DE-EDIFICIOS-Dr-Roberto-Aguiar-Falconi

Aguiar, R. (2011). Análisis del Factor de Reducción de las Fuerzas Sísmica. Ecuador: Centro de Investigaciones Científicas, Escuela Politécnica del Ejército.

Recuperado a partir de: http://es.scribd.com/doc/53548074/Analisis-del-factor-de-Reduccion-de-las-Fuerzas-Sismicas-Roberto-Aguiar-Falconi

Ahmad, S & Shah, S (1982). *Behavior of hoop confined concrete under high strain rates.* Am. Concr. Inst. J.

American Concrete Institute. ACI 318-11. *Building Code Requirements for Structural Concrete.*

American Society of Civil Engieers. ASCE 7-05. *Minimun Design Loads for Buildongs and Other Structures.*

Applied Technology Council ATC-40, Seismic Evaluation and Retrofit of Concrete Buildings.

 Arroyo, D & Terán, A. (2002) Factores de reducción de fuerzas sísmicas para el diseño de estructuras con sistemas pasivos de disipación de energía. *Rev. Ingeniería Sísmica. 66,* 73-93.
 Recuperado a partir de: http://www.redalyc.org/articulo.oa?id=61806603.

- Código Ecuatoriano de la Construcción. CEC-2007. *Requisitos generales de Diseño.*
- Cerda, P. (2006) Evaluación del factor de respuesta R en estructuras de concreto armado con pisos blandos. *Rev. Ciencia e Ingeniería.* 27 (2), 69-77.

Recuperado a partir de:

http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/viewFile/ 302/321

Daza-Duarte, Luis G.(s.f.) *Nuevo enfoque para determinar el factor de modificación de respuesta.* Recuperado a partir de:

http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/viewFile/59/59 Federal Emergency Managemente Agency FEMA 356-0 (2000), *Prestandard and Commentary for the Seismic Rehabilitacion of Buildings.*

Gálvez, A. (s. f.). Propuesta del factor de reducción de fuerza sísmica para sistemas estructurales en concreto armado con muros reforzados por barras dúctiles y mallas electro-soldadas.
Recuperado a partir de: http://blog.pucp.edu.pe/media/688/20080408-Valor%20R%20en%20SMDL.pdf.

- Hognestad, E. (1951) A Study of Combined Bending and Axial Load in Reinforced Concrete Members. University of Illinois Engeneering Experimental Station Boletin.
- Kent, D. & Park, R. (1971). Flexural Members with Confined Concrete. *Rev. Structural Division.* 97. 1969-1990
- Lara, O. & Toro, D. (2006). Elaboración y Análisis de Curvas: "Momento Flector vs. Curvatura" para secciones transversales de columnas de concreto reforzado diseñadas según el Código ACI 318-2002.
 Recuperado a partir de: http://www.researchgate.net/publication/28793522_Elaboracin_Y_Anlisis_ De_Curvas_Momento_Flector_Vs._Curvatura_Para_Secciones_Transver sales_De_Columnas_De_Concreto_Reforzado_Diseadas_Segn_El_Cdig o_Aci_318-2002.

Mander, J., Priestley, M. y Park, R (1988), Theoretical Stress-Strain Model

for Confined Concrete. *Rev. Journal of Structural Engineering.* 114 (8), 1804-1826. Recuperado a partir de: http://cedb.asce.org/cgi/WWWdisplay.cgi?8802271

- Miranda E, Bertero V (1994) Evaluation of Strenght Reduction Factors for Earthquake-Resistant Design. (Segunda Edición). Earthquake Spectra. Recuperado a partir de: http://www.ce.berkeley.edu/~mahin/CE227/MirandaAndBertero1994.pdf
- Mwafy, A & Elnashai, A. (2002). Calibration of force reduction factors Of RC buildings. *Rev. Earthquake Engineering*, *6*(2). 230-273

Nakano, Y. Ductilidad y Diseño Estructural de los Edificios de Concreto Reforzado. Recuperado a partir de: http://cidbimena.desastres.hn/docum/crid/Diciembre2005/pdf/spa/doc920 6/doc9206-d1.pdf

Newmark, N. & Hall, W (1973) Seismic design criteria for nuclear reactor facilities. Building Practices for Disaster Mitigation, National Bureau of Standards.

Newmark, N. & Hall, W (1982) *Earthquake Spectra and Design.* Berkeley, California: Earthquake Engineering Research Institute. Recuperado a partir de: http://peer2.berkeley.edu/ngawest2_wg/wpcontent/uploads/2010/09/Newmark-Hall-1982.pdf

- Nilson, A (1999). *Diseño de estructuras de Concreto* (Duodécima edición) Colombia: McGRAW-HILL, Inc.
- Norma Ecuatoriana de la Construcción. NEC-11. *Capítulo 2: Peligro Sísmico y Requisitos de Diseño Sismo-resistente.*
- Park, R. y Paulay, T. (1978). *Estructuras de Concreto Reforzado* (Primera Edición). México: Editorial Limusa. S.A.
- Priestley, M., y Paulay, T. (1992). *Seismic Design of Reinforced Concrete and Masonry Buildings.* (Primera Edición) New York: John Wiley & Sons, Inc.

- Romo, M. (s.f.) *Temas de Hormigón Armado.* Ecuador: Escuela Politécnica del Ejército.
- Sala, R (2005). Factores de Reducción para Ductilidad Cíclica para Sismos Cercanos a la Falla.
 Recuperado a partir de: http://www.cib.espol.edu.ec/Digipath/D_Tesis_PDF/D-34077.pdf
- Saúd, J (2011). Aplicación del Factor de Reducción por Ductilidad de Estructuras con comportamiento no lineal a pórticos planos de Hormigón Armado con diferentes pórticos.
- Vielma, J.C, Barbat, A & Oller, S. (2006) Factores de respuesta. Estado del arte y estudio comparativo entre códigos. *Rev. Internacional de Ingeniería de Estructuras. 11* (1), 77-106

Recuperado a partir de: http://www.espe.edu.ec/portal/files/libros/R-ESTRUCTURAS/REVISTA%2520VOL%252011%2520No.4%25202006. pdf

Viera, L. (2004). Diseño Sísmico basado en Desempeño de Edificios de Hormigón Armado.

Recuperado a partir de:

http://www.sisman.utm.edu.ec/libros/FACULTAD%20DE%20CIENCIAS% 20MATEM%C3%81TICAS%20F%C3%8DSICAS%20Y%20QU%C3%8D MICAS/INGENIER%C3%8DA%20CIVIL/09/INGENIERIA%20SISMICA/Li nkClick.pdf.

- Villacís, C. (2011). Factores de Reducción de Respuesta Sísmica, coeficientes de configuración estructural y control de deformaciones para la Nueva Norma Ecuatoriana de la Construcción NEC-2011. Recuperado a partir de: http://repositorio.usfq.edu.ec/handle/23000/1441
- Whittaker A, Hart G & Rojahn C. (1987). Seismic Response Modification Factor. *Rev. Structural Engineering ASCE.* 125(4), 438-444